ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfoprab2 GIF version

Theorem dfoprab2 5577
Description: Class abstraction for operations in terms of class abstraction of ordered pairs. (Contributed by NM, 12-Mar-1995.)
Assertion
Ref Expression
dfoprab2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
Distinct variable groups:   𝑥,𝑧,𝑤   𝑦,𝑧,𝑤   𝜑,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem dfoprab2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 excom 1595 . . . 4 (∃𝑧𝑤𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑤𝑧𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
2 exrot4 1622 . . . . 5 (∃𝑧𝑤𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑥𝑦𝑧𝑤(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
3 opeq1 3572 . . . . . . . . . . . 12 (𝑤 = ⟨𝑥, 𝑦⟩ → ⟨𝑤, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
43eqeq2d 2093 . . . . . . . . . . 11 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑣 = ⟨𝑤, 𝑧⟩ ↔ 𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
54pm5.32ri 443 . . . . . . . . . 10 ((𝑣 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩))
65anbi1i 446 . . . . . . . . 9 (((𝑣 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ∧ 𝜑) ↔ ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ∧ 𝜑))
7 anass 393 . . . . . . . . 9 (((𝑣 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ∧ 𝜑) ↔ (𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
8 an32 527 . . . . . . . . 9 (((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ∧ 𝜑) ↔ ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩))
96, 7, 83bitr3i 208 . . . . . . . 8 ((𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩))
109exbii 1537 . . . . . . 7 (∃𝑤(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑤((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩))
11 vex 2605 . . . . . . . . . 10 𝑥 ∈ V
12 vex 2605 . . . . . . . . . 10 𝑦 ∈ V
1311, 12opex 3986 . . . . . . . . 9 𝑥, 𝑦⟩ ∈ V
1413isseti 2608 . . . . . . . 8 𝑤 𝑤 = ⟨𝑥, 𝑦
15 19.42v 1828 . . . . . . . 8 (∃𝑤((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ↔ ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ ∃𝑤 𝑤 = ⟨𝑥, 𝑦⟩))
1614, 15mpbiran2 883 . . . . . . 7 (∃𝑤((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
1710, 16bitri 182 . . . . . 6 (∃𝑤(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
18173exbii 1539 . . . . 5 (∃𝑥𝑦𝑧𝑤(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
192, 18bitri 182 . . . 4 (∃𝑧𝑤𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
20 19.42vv 1830 . . . . 5 (∃𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ (𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
21202exbii 1538 . . . 4 (∃𝑤𝑧𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑤𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
221, 19, 213bitr3i 208 . . 3 (∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑤𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
2322abbii 2195 . 2 {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} = {𝑣 ∣ ∃𝑤𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))}
24 df-oprab 5541 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
25 df-opab 3842 . 2 {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑣 ∣ ∃𝑤𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))}
2623, 24, 253eqtr4i 2112 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1285  wex 1422  {cab 2068  cop 3403  {copab 3840  {coprab 5538
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-opab 3842  df-oprab 5541
This theorem is referenced by:  reloprab  5578  cbvoprab1  5601  cbvoprab12  5603  cbvoprab3  5605  dmoprab  5610  rnoprab  5612  ssoprab2i  5618  mpt2mptx  5620  resoprab  5622  funoprabg  5625  ov6g  5663  dfoprab3s  5841  xpcomco  6360
  Copyright terms: Public domain W3C validator