ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dford3 GIF version

Theorem dford3 4130
Description: Alias for df-iord 4129. Use it instead of df-iord 4129 for naming consistency with set.mm. (Contributed by Jim Kingdon, 10-Oct-2018.)
Assertion
Ref Expression
dford3 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dford3
StepHypRef Expression
1 df-iord 4129 1 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103  wral 2349  Tr wtr 3883  Ord word 4125
This theorem depends on definitions:  df-iord 4129
This theorem is referenced by:  ordeq  4135  ordtr  4141  trssord  4143  ordelord  4144  ord0  4154  ordon  4238  ordsucim  4252  onintonm  4269  ordom  4355  bj-nnord  10938  bj-omord  10940
  Copyright terms: Public domain W3C validator