ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfpr2 GIF version

Theorem dfpr2 3425
Description: Alternate definition of unordered pair. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.)
Assertion
Ref Expression
dfpr2 {𝐴, 𝐵} = {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfpr2
StepHypRef Expression
1 df-pr 3413 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
2 elun 3114 . . . 4 (𝑥 ∈ ({𝐴} ∪ {𝐵}) ↔ (𝑥 ∈ {𝐴} ∨ 𝑥 ∈ {𝐵}))
3 velsn 3423 . . . . 5 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
4 velsn 3423 . . . . 5 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
53, 4orbi12i 714 . . . 4 ((𝑥 ∈ {𝐴} ∨ 𝑥 ∈ {𝐵}) ↔ (𝑥 = 𝐴𝑥 = 𝐵))
62, 5bitri 182 . . 3 (𝑥 ∈ ({𝐴} ∪ {𝐵}) ↔ (𝑥 = 𝐴𝑥 = 𝐵))
76abbi2i 2194 . 2 ({𝐴} ∪ {𝐵}) = {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵)}
81, 7eqtri 2102 1 {𝐴, 𝐵} = {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵)}
Colors of variables: wff set class
Syntax hints:  wo 662   = wceq 1285  wcel 1434  {cab 2068  cun 2972  {csn 3406  {cpr 3407
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-un 2978  df-sn 3412  df-pr 3413
This theorem is referenced by:  elprg  3426  nfpr  3450  pwsnss  3603  minmax  10250
  Copyright terms: Public domain W3C validator