ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrn2 GIF version

Theorem dfrn2 4548
Description: Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.)
Assertion
Ref Expression
dfrn2 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dfrn2
StepHypRef Expression
1 df-rn 4381 . 2 ran 𝐴 = dom 𝐴
2 df-dm 4380 . 2 dom 𝐴 = {𝑦 ∣ ∃𝑥 𝑦𝐴𝑥}
3 vex 2575 . . . . 5 𝑦 ∈ V
4 vex 2575 . . . . 5 𝑥 ∈ V
53, 4brcnv 4543 . . . 4 (𝑦𝐴𝑥𝑥𝐴𝑦)
65exbii 1510 . . 3 (∃𝑥 𝑦𝐴𝑥 ↔ ∃𝑥 𝑥𝐴𝑦)
76abbii 2167 . 2 {𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
81, 2, 73eqtri 2078 1 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
Colors of variables: wff set class
Syntax hints:   = wceq 1257  wex 1395  {cab 2040   class class class wbr 3789  ccnv 4369  dom cdm 4370  ran crn 4371
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-sep 3900  ax-pow 3952  ax-pr 3969
This theorem depends on definitions:  df-bi 114  df-3an 896  df-tru 1260  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-v 2574  df-un 2947  df-in 2949  df-ss 2956  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-br 3790  df-opab 3844  df-cnv 4378  df-dm 4380  df-rn 4381
This theorem is referenced by:  dfrn3  4549  dfdm4  4552  dm0rn0  4577  dmmrnm  4579  dfrnf  4600  dfima2  4695  funcnv3  4986
  Copyright terms: Public domain W3C validator