Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfsmo2 GIF version

Theorem dfsmo2 5956
 Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 4-Mar-2013.)
Assertion
Ref Expression
dfsmo2 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem dfsmo2
StepHypRef Expression
1 df-smo 5955 . 2 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))))
2 ralcom 2522 . . . . . 6 (∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)) ↔ ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
3 impexp 259 . . . . . . . . 9 (((𝑦 ∈ dom 𝐹𝑦𝑥) → (𝐹𝑦) ∈ (𝐹𝑥)) ↔ (𝑦 ∈ dom 𝐹 → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))))
4 simpr 108 . . . . . . . . . . 11 ((𝑦 ∈ dom 𝐹𝑦𝑥) → 𝑦𝑥)
5 ordtr1 4171 . . . . . . . . . . . . . . 15 (Ord dom 𝐹 → ((𝑦𝑥𝑥 ∈ dom 𝐹) → 𝑦 ∈ dom 𝐹))
653impib 1137 . . . . . . . . . . . . . 14 ((Ord dom 𝐹𝑦𝑥𝑥 ∈ dom 𝐹) → 𝑦 ∈ dom 𝐹)
763com23 1145 . . . . . . . . . . . . 13 ((Ord dom 𝐹𝑥 ∈ dom 𝐹𝑦𝑥) → 𝑦 ∈ dom 𝐹)
8 simp3 941 . . . . . . . . . . . . 13 ((Ord dom 𝐹𝑥 ∈ dom 𝐹𝑦𝑥) → 𝑦𝑥)
97, 8jca 300 . . . . . . . . . . . 12 ((Ord dom 𝐹𝑥 ∈ dom 𝐹𝑦𝑥) → (𝑦 ∈ dom 𝐹𝑦𝑥))
1093expia 1141 . . . . . . . . . . 11 ((Ord dom 𝐹𝑥 ∈ dom 𝐹) → (𝑦𝑥 → (𝑦 ∈ dom 𝐹𝑦𝑥)))
114, 10impbid2 141 . . . . . . . . . 10 ((Ord dom 𝐹𝑥 ∈ dom 𝐹) → ((𝑦 ∈ dom 𝐹𝑦𝑥) ↔ 𝑦𝑥))
1211imbi1d 229 . . . . . . . . 9 ((Ord dom 𝐹𝑥 ∈ dom 𝐹) → (((𝑦 ∈ dom 𝐹𝑦𝑥) → (𝐹𝑦) ∈ (𝐹𝑥)) ↔ (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))))
133, 12syl5bbr 192 . . . . . . . 8 ((Ord dom 𝐹𝑥 ∈ dom 𝐹) → ((𝑦 ∈ dom 𝐹 → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))) ↔ (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))))
1413ralbidv2 2375 . . . . . . 7 ((Ord dom 𝐹𝑥 ∈ dom 𝐹) → (∀𝑦 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)) ↔ ∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
1514ralbidva 2369 . . . . . 6 (Ord dom 𝐹 → (∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)) ↔ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
162, 15syl5bb 190 . . . . 5 (Ord dom 𝐹 → (∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)) ↔ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
1716pm5.32i 442 . . . 4 ((Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))) ↔ (Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
1817anbi2i 445 . . 3 ((𝐹:dom 𝐹⟶On ∧ (Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))) ↔ (𝐹:dom 𝐹⟶On ∧ (Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))))
19 3anass 924 . . 3 ((𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))) ↔ (𝐹:dom 𝐹⟶On ∧ (Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))))
20 3anass 924 . . 3 ((𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)) ↔ (𝐹:dom 𝐹⟶On ∧ (Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))))
2118, 19, 203bitr4i 210 . 2 ((𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))) ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
221, 21bitri 182 1 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ↔ wb 103   ∧ w3a 920   ∈ wcel 1434  ∀wral 2353  Ord word 4145  Oncon0 4146  dom cdm 4391  ⟶wf 4948  ‘cfv 4952  Smo wsmo 5954 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-v 2612  df-in 2988  df-ss 2995  df-uni 3622  df-tr 3896  df-iord 4149  df-smo 5955 This theorem is referenced by:  issmo2  5958  smores2  5963  smofvon2dm  5965
 Copyright terms: Public domain W3C validator