ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfsmo2 GIF version

Theorem dfsmo2 6184
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 4-Mar-2013.)
Assertion
Ref Expression
dfsmo2 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem dfsmo2
StepHypRef Expression
1 df-smo 6183 . 2 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))))
2 ralcom 2594 . . . . . 6 (∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)) ↔ ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
3 impexp 261 . . . . . . . . 9 (((𝑦 ∈ dom 𝐹𝑦𝑥) → (𝐹𝑦) ∈ (𝐹𝑥)) ↔ (𝑦 ∈ dom 𝐹 → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))))
4 simpr 109 . . . . . . . . . . 11 ((𝑦 ∈ dom 𝐹𝑦𝑥) → 𝑦𝑥)
5 ordtr1 4310 . . . . . . . . . . . . . . 15 (Ord dom 𝐹 → ((𝑦𝑥𝑥 ∈ dom 𝐹) → 𝑦 ∈ dom 𝐹))
653impib 1179 . . . . . . . . . . . . . 14 ((Ord dom 𝐹𝑦𝑥𝑥 ∈ dom 𝐹) → 𝑦 ∈ dom 𝐹)
763com23 1187 . . . . . . . . . . . . 13 ((Ord dom 𝐹𝑥 ∈ dom 𝐹𝑦𝑥) → 𝑦 ∈ dom 𝐹)
8 simp3 983 . . . . . . . . . . . . 13 ((Ord dom 𝐹𝑥 ∈ dom 𝐹𝑦𝑥) → 𝑦𝑥)
97, 8jca 304 . . . . . . . . . . . 12 ((Ord dom 𝐹𝑥 ∈ dom 𝐹𝑦𝑥) → (𝑦 ∈ dom 𝐹𝑦𝑥))
1093expia 1183 . . . . . . . . . . 11 ((Ord dom 𝐹𝑥 ∈ dom 𝐹) → (𝑦𝑥 → (𝑦 ∈ dom 𝐹𝑦𝑥)))
114, 10impbid2 142 . . . . . . . . . 10 ((Ord dom 𝐹𝑥 ∈ dom 𝐹) → ((𝑦 ∈ dom 𝐹𝑦𝑥) ↔ 𝑦𝑥))
1211imbi1d 230 . . . . . . . . 9 ((Ord dom 𝐹𝑥 ∈ dom 𝐹) → (((𝑦 ∈ dom 𝐹𝑦𝑥) → (𝐹𝑦) ∈ (𝐹𝑥)) ↔ (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))))
133, 12syl5bbr 193 . . . . . . . 8 ((Ord dom 𝐹𝑥 ∈ dom 𝐹) → ((𝑦 ∈ dom 𝐹 → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))) ↔ (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))))
1413ralbidv2 2439 . . . . . . 7 ((Ord dom 𝐹𝑥 ∈ dom 𝐹) → (∀𝑦 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)) ↔ ∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
1514ralbidva 2433 . . . . . 6 (Ord dom 𝐹 → (∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)) ↔ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
162, 15syl5bb 191 . . . . 5 (Ord dom 𝐹 → (∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)) ↔ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
1716pm5.32i 449 . . . 4 ((Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))) ↔ (Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
1817anbi2i 452 . . 3 ((𝐹:dom 𝐹⟶On ∧ (Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))) ↔ (𝐹:dom 𝐹⟶On ∧ (Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))))
19 3anass 966 . . 3 ((𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))) ↔ (𝐹:dom 𝐹⟶On ∧ (Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))))
20 3anass 966 . . 3 ((𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)) ↔ (𝐹:dom 𝐹⟶On ∧ (Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))))
2118, 19, 203bitr4i 211 . 2 ((𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹𝑥 ∈ dom 𝐹(𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥))) ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
221, 21bitri 183 1 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962  wcel 1480  wral 2416  Ord word 4284  Oncon0 4285  dom cdm 4539  wf 5119  cfv 5123  Smo wsmo 6182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-v 2688  df-in 3077  df-ss 3084  df-uni 3737  df-tr 4027  df-iord 4288  df-smo 6183
This theorem is referenced by:  issmo2  6186  smores2  6191  smofvon2dm  6193
  Copyright terms: Public domain W3C validator