Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss2f GIF version

Theorem dfss2f 2991
 Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994.) (Revised by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
dfss2f.1 𝑥𝐴
dfss2f.2 𝑥𝐵
Assertion
Ref Expression
dfss2f (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))

Proof of Theorem dfss2f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfss2 2989 . 2 (𝐴𝐵 ↔ ∀𝑧(𝑧𝐴𝑧𝐵))
2 dfss2f.1 . . . . 5 𝑥𝐴
32nfcri 2214 . . . 4 𝑥 𝑧𝐴
4 dfss2f.2 . . . . 5 𝑥𝐵
54nfcri 2214 . . . 4 𝑥 𝑧𝐵
63, 5nfim 1505 . . 3 𝑥(𝑧𝐴𝑧𝐵)
7 nfv 1462 . . 3 𝑧(𝑥𝐴𝑥𝐵)
8 eleq1 2142 . . . 4 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
9 eleq1 2142 . . . 4 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
108, 9imbi12d 232 . . 3 (𝑧 = 𝑥 → ((𝑧𝐴𝑧𝐵) ↔ (𝑥𝐴𝑥𝐵)))
116, 7, 10cbval 1678 . 2 (∀𝑧(𝑧𝐴𝑧𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
121, 11bitri 182 1 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 103  ∀wal 1283   ∈ wcel 1434  Ⅎwnfc 2207   ⊆ wss 2974 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-in 2980  df-ss 2987 This theorem is referenced by:  dfss3f  2992  ssrd  3005  ss2ab  3063
 Copyright terms: Public domain W3C validator