ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif1enen GIF version

Theorem dif1enen 6767
Description: Subtracting one element from each of two equinumerous finite sets. (Contributed by Jim Kingdon, 5-Jun-2022.)
Hypotheses
Ref Expression
dif1enen.a (𝜑𝐴 ∈ Fin)
dif1enen.ab (𝜑𝐴𝐵)
dif1enen.c (𝜑𝐶𝐴)
dif1enen.d (𝜑𝐷𝐵)
Assertion
Ref Expression
dif1enen (𝜑 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))

Proof of Theorem dif1enen
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dif1enen.a . . 3 (𝜑𝐴 ∈ Fin)
2 isfi 6648 . . 3 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
31, 2sylib 121 . 2 (𝜑 → ∃𝑛 ∈ ω 𝐴𝑛)
4 simplrr 525 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴𝑛)
5 breq2 3928 . . . . . . 7 (𝑛 = ∅ → (𝐴𝑛𝐴 ≈ ∅))
65adantl 275 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → (𝐴𝑛𝐴 ≈ ∅))
74, 6mpbid 146 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 ≈ ∅)
8 en0 6682 . . . . 5 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
97, 8sylib 121 . . . 4 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 = ∅)
10 dif1enen.c . . . . . 6 (𝜑𝐶𝐴)
11 n0i 3363 . . . . . 6 (𝐶𝐴 → ¬ 𝐴 = ∅)
1210, 11syl 14 . . . . 5 (𝜑 → ¬ 𝐴 = ∅)
1312ad2antrr 479 . . . 4 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → ¬ 𝐴 = ∅)
149, 13pm2.21dd 609 . . 3 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
15 simplr 519 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝑚 ∈ ω)
16 simprr 521 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴𝑛)
1716ad2antrr 479 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐴𝑛)
18 breq2 3928 . . . . . . . . . 10 (𝑛 = suc 𝑚 → (𝐴𝑛𝐴 ≈ suc 𝑚))
1918adantl 275 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐴𝑛𝐴 ≈ suc 𝑚))
2017, 19mpbid 146 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐴 ≈ suc 𝑚)
2110ad3antrrr 483 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐶𝐴)
22 dif1en 6766 . . . . . . . 8 ((𝑚 ∈ ω ∧ 𝐴 ≈ suc 𝑚𝐶𝐴) → (𝐴 ∖ {𝐶}) ≈ 𝑚)
2315, 20, 21, 22syl3anc 1216 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐴 ∖ {𝐶}) ≈ 𝑚)
24 dif1enen.ab . . . . . . . . . . . 12 (𝜑𝐴𝐵)
2524ad3antrrr 483 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐴𝐵)
2625ensymd 6670 . . . . . . . . . 10 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐵𝐴)
27 entr 6671 . . . . . . . . . 10 ((𝐵𝐴𝐴 ≈ suc 𝑚) → 𝐵 ≈ suc 𝑚)
2826, 20, 27syl2anc 408 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐵 ≈ suc 𝑚)
29 dif1enen.d . . . . . . . . . 10 (𝜑𝐷𝐵)
3029ad3antrrr 483 . . . . . . . . 9 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐷𝐵)
31 dif1en 6766 . . . . . . . . 9 ((𝑚 ∈ ω ∧ 𝐵 ≈ suc 𝑚𝐷𝐵) → (𝐵 ∖ {𝐷}) ≈ 𝑚)
3215, 28, 30, 31syl3anc 1216 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐵 ∖ {𝐷}) ≈ 𝑚)
3332ensymd 6670 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝑚 ≈ (𝐵 ∖ {𝐷}))
34 entr 6671 . . . . . . 7 (((𝐴 ∖ {𝐶}) ≈ 𝑚𝑚 ≈ (𝐵 ∖ {𝐷})) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
3523, 33, 34syl2anc 408 . . . . . 6 ((((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
3635ex 114 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) → (𝑛 = suc 𝑚 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷})))
3736rexlimdva 2547 . . . 4 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (∃𝑚 ∈ ω 𝑛 = suc 𝑚 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷})))
3837imp 123 . . 3 (((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ ∃𝑚 ∈ ω 𝑛 = suc 𝑚) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
39 nn0suc 4513 . . . 4 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
4039ad2antrl 481 . . 3 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
4114, 38, 40mpjaodan 787 . 2 ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
423, 41rexlimddv 2552 1 (𝜑 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697   = wceq 1331  wcel 1480  wrex 2415  cdif 3063  c0 3358  {csn 3522   class class class wbr 3924  suc csuc 4282  ωcom 4499  cen 6625  Fincfn 6627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-er 6422  df-en 6628  df-fin 6630
This theorem is referenced by:  fisseneq  6813
  Copyright terms: Public domain W3C validator