ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difelfznle GIF version

Theorem difelfznle 9065
Description: The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
Assertion
Ref Expression
difelfznle ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁))

Proof of Theorem difelfznle
StepHypRef Expression
1 elfz2nn0 9045 . . . . . 6 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
2 nn0addcl 8244 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
32nn0zd 8387 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
433adant3 933 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑀 + 𝑁) ∈ ℤ)
51, 4sylbi 118 . . . . 5 (𝑀 ∈ (0...𝑁) → (𝑀 + 𝑁) ∈ ℤ)
6 elfzelz 8962 . . . . 5 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
7 zsubcl 8313 . . . . 5 (((𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 + 𝑁) − 𝐾) ∈ ℤ)
85, 6, 7syl2anr 278 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝑁) − 𝐾) ∈ ℤ)
983adant3 933 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ ℤ)
106zred 8389 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℝ)
1110adantr 265 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝐾 ∈ ℝ)
12 elfzel2 8960 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
1312zred 8389 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℝ)
1413adantr 265 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝑁 ∈ ℝ)
15 nn0readdcl 8268 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℝ)
16153adant3 933 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑀 + 𝑁) ∈ ℝ)
171, 16sylbi 118 . . . . . . 7 (𝑀 ∈ (0...𝑁) → (𝑀 + 𝑁) ∈ ℝ)
1817adantl 266 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (𝑀 + 𝑁) ∈ ℝ)
19 elfzle2 8964 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝐾𝑁)
20 elfzle1 8963 . . . . . . . 8 (𝑀 ∈ (0...𝑁) → 0 ≤ 𝑀)
21 nn0re 8218 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
22 nn0re 8218 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2321, 22anim12ci 326 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
24233adant3 933 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
251, 24sylbi 118 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
26 addge02 7512 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀𝑁 ≤ (𝑀 + 𝑁)))
2725, 26syl 14 . . . . . . . 8 (𝑀 ∈ (0...𝑁) → (0 ≤ 𝑀𝑁 ≤ (𝑀 + 𝑁)))
2820, 27mpbid 139 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑁 ≤ (𝑀 + 𝑁))
2919, 28anim12i 325 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (𝐾𝑁𝑁 ≤ (𝑀 + 𝑁)))
30 letr 7130 . . . . . . 7 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) → ((𝐾𝑁𝑁 ≤ (𝑀 + 𝑁)) → 𝐾 ≤ (𝑀 + 𝑁)))
3130imp 119 . . . . . 6 (((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) ∧ (𝐾𝑁𝑁 ≤ (𝑀 + 𝑁))) → 𝐾 ≤ (𝑀 + 𝑁))
3211, 14, 18, 29, 31syl31anc 1147 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝐾 ≤ (𝑀 + 𝑁))
33323adant3 933 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → 𝐾 ≤ (𝑀 + 𝑁))
34 zre 8276 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
3521, 22anim12i 325 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
36353adant3 933 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
371, 36sylbi 118 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
38 readdcl 7035 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 + 𝑁) ∈ ℝ)
3937, 38syl 14 . . . . . . . 8 (𝑀 ∈ (0...𝑁) → (𝑀 + 𝑁) ∈ ℝ)
4034, 39anim12ci 326 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ))
416, 40sylan 271 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ))
42413adant3 933 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ))
43 subge0 7514 . . . . 5 (((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ ((𝑀 + 𝑁) − 𝐾) ↔ 𝐾 ≤ (𝑀 + 𝑁)))
4442, 43syl 14 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → (0 ≤ ((𝑀 + 𝑁) − 𝐾) ↔ 𝐾 ≤ (𝑀 + 𝑁)))
4533, 44mpbird 160 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → 0 ≤ ((𝑀 + 𝑁) − 𝐾))
46 elnn0z 8285 . . 3 (((𝑀 + 𝑁) − 𝐾) ∈ ℕ0 ↔ (((𝑀 + 𝑁) − 𝐾) ∈ ℤ ∧ 0 ≤ ((𝑀 + 𝑁) − 𝐾)))
479, 45, 46sylanbrc 402 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ ℕ0)
48 elfz3nn0 9048 . . 3 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
49483ad2ant1 934 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → 𝑁 ∈ ℕ0)
50 elfzelz 8962 . . . . . 6 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℤ)
51 zltnle 8318 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 < 𝐾 ↔ ¬ 𝐾𝑀))
5251ancoms 259 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 ↔ ¬ 𝐾𝑀))
53 zre 8276 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
54 ltle 7134 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 < 𝐾𝑀𝐾))
5553, 34, 54syl2anr 278 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾𝑀𝐾))
5652, 55sylbird 163 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (¬ 𝐾𝑀𝑀𝐾))
576, 50, 56syl2an 277 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (¬ 𝐾𝑀𝑀𝐾))
58573impia 1110 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → 𝑀𝐾)
5950zred 8389 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℝ)
6059adantl 266 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝑀 ∈ ℝ)
6160, 11, 14leadd1d 7574 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (𝑀𝐾 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁)))
62613adant3 933 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → (𝑀𝐾 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁)))
6358, 62mpbid 139 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → (𝑀 + 𝑁) ≤ (𝐾 + 𝑁))
6418, 11, 14lesubadd2d 7579 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (((𝑀 + 𝑁) − 𝐾) ≤ 𝑁 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁)))
65643adant3 933 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → (((𝑀 + 𝑁) − 𝐾) ≤ 𝑁 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁)))
6663, 65mpbird 160 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ≤ 𝑁)
67 elfz2nn0 9045 . 2 (((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁) ↔ (((𝑀 + 𝑁) − 𝐾) ∈ ℕ0𝑁 ∈ ℕ0 ∧ ((𝑀 + 𝑁) − 𝐾) ≤ 𝑁))
6847, 49, 66, 67syl3anbrc 1097 1 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101  wb 102  w3a 894  wcel 1407   class class class wbr 3789  (class class class)co 5537  cr 6916  0cc0 6917   + caddc 6920   < clt 7089  cle 7090  cmin 7215  0cn0 8209  cz 8272  ...cfz 8946
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 552  ax-in2 553  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-13 1418  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-coll 3897  ax-sep 3900  ax-nul 3908  ax-pow 3952  ax-pr 3969  ax-un 4195  ax-setind 4287  ax-iinf 4336  ax-cnex 7003  ax-resscn 7004  ax-1cn 7005  ax-1re 7006  ax-icn 7007  ax-addcl 7008  ax-addrcl 7009  ax-mulcl 7010  ax-addcom 7012  ax-addass 7014  ax-distr 7016  ax-i2m1 7017  ax-0id 7020  ax-rnegex 7021  ax-cnre 7023  ax-pre-ltirr 7024  ax-pre-ltwlin 7025  ax-pre-lttrn 7026  ax-pre-ltadd 7028
This theorem depends on definitions:  df-bi 114  df-dc 752  df-3or 895  df-3an 896  df-tru 1260  df-fal 1263  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ne 2219  df-nel 2313  df-ral 2326  df-rex 2327  df-reu 2328  df-rab 2330  df-v 2574  df-sbc 2785  df-csb 2878  df-dif 2945  df-un 2947  df-in 2949  df-ss 2956  df-nul 3250  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-int 3641  df-iun 3684  df-br 3790  df-opab 3844  df-mpt 3845  df-tr 3880  df-eprel 4051  df-id 4055  df-po 4058  df-iso 4059  df-iord 4128  df-on 4130  df-suc 4133  df-iom 4339  df-xp 4376  df-rel 4377  df-cnv 4378  df-co 4379  df-dm 4380  df-rn 4381  df-res 4382  df-ima 4383  df-iota 4892  df-fun 4929  df-fn 4930  df-f 4931  df-f1 4932  df-fo 4933  df-f1o 4934  df-fv 4935  df-riota 5493  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 5985  df-1o 6029  df-2o 6030  df-oadd 6033  df-omul 6034  df-er 6134  df-ec 6136  df-qs 6140  df-ni 6430  df-pli 6431  df-mi 6432  df-lti 6433  df-plpq 6470  df-mpq 6471  df-enq 6473  df-nqqs 6474  df-plqqs 6475  df-mqqs 6476  df-1nqqs 6477  df-rq 6478  df-ltnqqs 6479  df-enq0 6550  df-nq0 6551  df-0nq0 6552  df-plq0 6553  df-mq0 6554  df-inp 6592  df-i1p 6593  df-iplp 6594  df-iltp 6596  df-enr 6839  df-nr 6840  df-ltr 6843  df-0r 6844  df-1r 6845  df-0 6924  df-1 6925  df-r 6927  df-lt 6930  df-pnf 7091  df-mnf 7092  df-xr 7093  df-ltxr 7094  df-le 7095  df-sub 7217  df-neg 7218  df-inn 7961  df-n0 8210  df-z 8273  df-uz 8540  df-fz 8947
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator