Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  difelfznle GIF version

Theorem difelfznle 9212
 Description: The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
Assertion
Ref Expression
difelfznle ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁))

Proof of Theorem difelfznle
StepHypRef Expression
1 elfz2nn0 9194 . . . . . 6 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
2 nn0addcl 8379 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
32nn0zd 8537 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
433adant3 959 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑀 + 𝑁) ∈ ℤ)
51, 4sylbi 119 . . . . 5 (𝑀 ∈ (0...𝑁) → (𝑀 + 𝑁) ∈ ℤ)
6 elfzelz 9110 . . . . 5 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
7 zsubcl 8462 . . . . 5 (((𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 + 𝑁) − 𝐾) ∈ ℤ)
85, 6, 7syl2anr 284 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝑁) − 𝐾) ∈ ℤ)
983adant3 959 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ ℤ)
106zred 8539 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℝ)
1110adantr 270 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝐾 ∈ ℝ)
12 elfzel2 9108 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
1312zred 8539 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℝ)
1413adantr 270 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝑁 ∈ ℝ)
15 nn0readdcl 8403 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℝ)
16153adant3 959 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑀 + 𝑁) ∈ ℝ)
171, 16sylbi 119 . . . . . . 7 (𝑀 ∈ (0...𝑁) → (𝑀 + 𝑁) ∈ ℝ)
1817adantl 271 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (𝑀 + 𝑁) ∈ ℝ)
19 elfzle2 9112 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝐾𝑁)
20 elfzle1 9111 . . . . . . . 8 (𝑀 ∈ (0...𝑁) → 0 ≤ 𝑀)
21 nn0re 8353 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
22 nn0re 8353 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2321, 22anim12ci 332 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
24233adant3 959 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
251, 24sylbi 119 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
26 addge02 7633 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀𝑁 ≤ (𝑀 + 𝑁)))
2725, 26syl 14 . . . . . . . 8 (𝑀 ∈ (0...𝑁) → (0 ≤ 𝑀𝑁 ≤ (𝑀 + 𝑁)))
2820, 27mpbid 145 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑁 ≤ (𝑀 + 𝑁))
2919, 28anim12i 331 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (𝐾𝑁𝑁 ≤ (𝑀 + 𝑁)))
30 letr 7250 . . . . . . 7 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) → ((𝐾𝑁𝑁 ≤ (𝑀 + 𝑁)) → 𝐾 ≤ (𝑀 + 𝑁)))
3130imp 122 . . . . . 6 (((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) ∧ (𝐾𝑁𝑁 ≤ (𝑀 + 𝑁))) → 𝐾 ≤ (𝑀 + 𝑁))
3211, 14, 18, 29, 31syl31anc 1173 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝐾 ≤ (𝑀 + 𝑁))
33323adant3 959 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → 𝐾 ≤ (𝑀 + 𝑁))
34 zre 8425 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
3521, 22anim12i 331 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
36353adant3 959 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
371, 36sylbi 119 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
38 readdcl 7150 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 + 𝑁) ∈ ℝ)
3937, 38syl 14 . . . . . . . 8 (𝑀 ∈ (0...𝑁) → (𝑀 + 𝑁) ∈ ℝ)
4034, 39anim12ci 332 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ))
416, 40sylan 277 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ))
42413adant3 959 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ))
43 subge0 7635 . . . . 5 (((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ ((𝑀 + 𝑁) − 𝐾) ↔ 𝐾 ≤ (𝑀 + 𝑁)))
4442, 43syl 14 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → (0 ≤ ((𝑀 + 𝑁) − 𝐾) ↔ 𝐾 ≤ (𝑀 + 𝑁)))
4533, 44mpbird 165 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → 0 ≤ ((𝑀 + 𝑁) − 𝐾))
46 elnn0z 8434 . . 3 (((𝑀 + 𝑁) − 𝐾) ∈ ℕ0 ↔ (((𝑀 + 𝑁) − 𝐾) ∈ ℤ ∧ 0 ≤ ((𝑀 + 𝑁) − 𝐾)))
479, 45, 46sylanbrc 408 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ ℕ0)
48 elfz3nn0 9197 . . 3 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
49483ad2ant1 960 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → 𝑁 ∈ ℕ0)
50 elfzelz 9110 . . . . . 6 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℤ)
51 zltnle 8467 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 < 𝐾 ↔ ¬ 𝐾𝑀))
5251ancoms 264 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 ↔ ¬ 𝐾𝑀))
53 zre 8425 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
54 ltle 7254 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 < 𝐾𝑀𝐾))
5553, 34, 54syl2anr 284 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾𝑀𝐾))
5652, 55sylbird 168 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (¬ 𝐾𝑀𝑀𝐾))
576, 50, 56syl2an 283 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (¬ 𝐾𝑀𝑀𝐾))
58573impia 1136 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → 𝑀𝐾)
5950zred 8539 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℝ)
6059adantl 271 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝑀 ∈ ℝ)
6160, 11, 14leadd1d 7695 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (𝑀𝐾 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁)))
62613adant3 959 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → (𝑀𝐾 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁)))
6358, 62mpbid 145 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → (𝑀 + 𝑁) ≤ (𝐾 + 𝑁))
6418, 11, 14lesubadd2d 7700 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (((𝑀 + 𝑁) − 𝐾) ≤ 𝑁 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁)))
65643adant3 959 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → (((𝑀 + 𝑁) − 𝐾) ≤ 𝑁 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁)))
6663, 65mpbird 165 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ≤ 𝑁)
67 elfz2nn0 9194 . 2 (((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁) ↔ (((𝑀 + 𝑁) − 𝐾) ∈ ℕ0𝑁 ∈ ℕ0 ∧ ((𝑀 + 𝑁) − 𝐾) ≤ 𝑁))
6847, 49, 66, 67syl3anbrc 1123 1 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 102   ↔ wb 103   ∧ w3a 920   ∈ wcel 1434   class class class wbr 3787  (class class class)co 5537  ℝcr 7031  0cc0 7032   + caddc 7035   < clt 7204   ≤ cle 7205   − cmin 7335  ℕ0cn0 8344  ℤcz 8421  ...cfz 9094 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-setind 4282  ax-cnex 7118  ax-resscn 7119  ax-1cn 7120  ax-1re 7121  ax-icn 7122  ax-addcl 7123  ax-addrcl 7124  ax-mulcl 7125  ax-addcom 7127  ax-addass 7129  ax-distr 7131  ax-i2m1 7132  ax-0lt1 7133  ax-0id 7135  ax-rnegex 7136  ax-cnre 7138  ax-pre-ltirr 7139  ax-pre-ltwlin 7140  ax-pre-lttrn 7141  ax-pre-ltadd 7143 This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-int 3639  df-br 3788  df-opab 3842  df-mpt 3843  df-id 4050  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-fv 4934  df-riota 5493  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-pnf 7206  df-mnf 7207  df-xr 7208  df-ltxr 7209  df-le 7210  df-sub 7337  df-neg 7338  df-inn 8096  df-n0 8345  df-z 8422  df-uz 8690  df-fz 9095 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator