![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > difsnb | GIF version |
Description: (𝐵 ∖ {𝐴}) equals 𝐵 if and only if 𝐴 is not a member of 𝐵. Generalization of difsn 3525. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
difsnb | ⊢ (¬ 𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difsn 3525 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∖ {𝐴}) = 𝐵) | |
2 | neldifsnd 3522 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) | |
3 | nelne1 2336 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) → 𝐵 ≠ (𝐵 ∖ {𝐴})) | |
4 | 2, 3 | mpdan 412 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ≠ (𝐵 ∖ {𝐴})) |
5 | 4 | necomd 2332 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐵 ∖ {𝐴}) ≠ 𝐵) |
6 | 5 | necon2bi 2301 | . 2 ⊢ ((𝐵 ∖ {𝐴}) = 𝐵 → ¬ 𝐴 ∈ 𝐵) |
7 | 1, 6 | impbii 124 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 103 = wceq 1285 ∈ wcel 1434 ≠ wne 2246 ∖ cdif 2971 {csn 3400 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-v 2604 df-dif 2976 df-sn 3406 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |