ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difundi GIF version

Theorem difundi 3323
Description: Distributive law for class difference. Theorem 39 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difundi (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))

Proof of Theorem difundi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3075 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
2 eldif 3075 . . . 4 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐶))
31, 2anbi12i 455 . . 3 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥 ∈ (𝐴𝐶)) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐶)))
4 elin 3254 . . 3 (𝑥 ∈ ((𝐴𝐵) ∩ (𝐴𝐶)) ↔ (𝑥 ∈ (𝐴𝐵) ∧ 𝑥 ∈ (𝐴𝐶)))
5 eldif 3075 . . . . . 6 (𝑥 ∈ (𝐴 ∖ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐵𝐶)))
6 elun 3212 . . . . . . . 8 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
76notbii 657 . . . . . . 7 𝑥 ∈ (𝐵𝐶) ↔ ¬ (𝑥𝐵𝑥𝐶))
87anbi2i 452 . . . . . 6 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ ¬ (𝑥𝐵𝑥𝐶)))
95, 8bitri 183 . . . . 5 (𝑥 ∈ (𝐴 ∖ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ ¬ (𝑥𝐵𝑥𝐶)))
10 ioran 741 . . . . . 6 (¬ (𝑥𝐵𝑥𝐶) ↔ (¬ 𝑥𝐵 ∧ ¬ 𝑥𝐶))
1110anbi2i 452 . . . . 5 ((𝑥𝐴 ∧ ¬ (𝑥𝐵𝑥𝐶)) ↔ (𝑥𝐴 ∧ (¬ 𝑥𝐵 ∧ ¬ 𝑥𝐶)))
129, 11bitri 183 . . . 4 (𝑥 ∈ (𝐴 ∖ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (¬ 𝑥𝐵 ∧ ¬ 𝑥𝐶)))
13 anandi 579 . . . 4 ((𝑥𝐴 ∧ (¬ 𝑥𝐵 ∧ ¬ 𝑥𝐶)) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐶)))
1412, 13bitri 183 . . 3 (𝑥 ∈ (𝐴 ∖ (𝐵𝐶)) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐶)))
153, 4, 143bitr4ri 212 . 2 (𝑥 ∈ (𝐴 ∖ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∩ (𝐴𝐶)))
1615eqriv 2134 1 (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wo 697   = wceq 1331  wcel 1480  cdif 3063  cun 3064  cin 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-dif 3068  df-un 3070  df-in 3072
This theorem is referenced by:  undm  3329  undifdc  6805  uncld  12271
  Copyright terms: Public domain W3C validator