![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > disj2 | GIF version |
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 17-May-1998.) |
Ref | Expression |
---|---|
disj2 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3020 | . 2 ⊢ 𝐴 ⊆ V | |
2 | reldisj 3296 | . 2 ⊢ (𝐴 ⊆ V → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵))) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 = wceq 1285 Vcvv 2602 ∖ cdif 2971 ∩ cin 2973 ⊆ wss 2974 ∅c0 3252 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-v 2604 df-dif 2976 df-in 2980 df-ss 2987 df-nul 3253 |
This theorem is referenced by: ssindif0im 3304 intirr 4735 |
Copyright terms: Public domain | W3C validator |