![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > disjdif | GIF version |
Description: A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.) |
Ref | Expression |
---|---|
disjdif | ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 3193 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | inssdif0im 3318 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1285 ∖ cdif 2971 ∩ cin 2973 ⊆ wss 2974 ∅c0 3258 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-dif 2976 df-in 2980 df-ss 2987 df-nul 3259 |
This theorem is referenced by: ssdifin0 3331 difdifdirss 3334 fvsnun1 5392 fvsnun2 5393 phplem2 6388 unfiin 6444 |
Copyright terms: Public domain | W3C validator |