Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjxsn GIF version

Theorem disjxsn 3803
 Description: A singleton collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjxsn Disj 𝑥 ∈ {𝐴}𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjxsn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 3788 . 2 (Disj 𝑥 ∈ {𝐴}𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦𝐵))
2 moeq 2776 . . 3 ∃*𝑥 𝑥 = 𝐴
3 elsni 3434 . . . . 5 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
43adantr 270 . . . 4 ((𝑥 ∈ {𝐴} ∧ 𝑦𝐵) → 𝑥 = 𝐴)
54moimi 2008 . . 3 (∃*𝑥 𝑥 = 𝐴 → ∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦𝐵))
62, 5ax-mp 7 . 2 ∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦𝐵)
71, 6mpgbir 1383 1 Disj 𝑥 ∈ {𝐴}𝐵
 Colors of variables: wff set class Syntax hints:   ∧ wa 102   = wceq 1285   ∈ wcel 1434  ∃*wmo 1944  {csn 3416  Disj wdisj 3786 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-rmo 2361  df-v 2612  df-sn 3422  df-disj 3787 This theorem is referenced by:  disjx0  3804
 Copyright terms: Public domain W3C validator