ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem1prl GIF version

Theorem distrlem1prl 7383
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem1prl ((𝐴P𝐵P𝐶P) → (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))

Proof of Theorem distrlem1prl
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 7338 . . . . 5 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
2 df-imp 7270 . . . . . 6 ·P = (𝑦P, 𝑧P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑦) ∧ ∈ (1st𝑧) ∧ 𝑓 = (𝑔 ·Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑦) ∧ ∈ (2nd𝑧) ∧ 𝑓 = (𝑔 ·Q ))}⟩)
3 mulclnq 7177 . . . . . 6 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
42, 3genpelvl 7313 . . . . 5 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → (𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ∃𝑥 ∈ (1st𝐴)∃𝑣 ∈ (1st ‘(𝐵 +P 𝐶))𝑤 = (𝑥 ·Q 𝑣)))
51, 4sylan2 284 . . . 4 ((𝐴P ∧ (𝐵P𝐶P)) → (𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ∃𝑥 ∈ (1st𝐴)∃𝑣 ∈ (1st ‘(𝐵 +P 𝐶))𝑤 = (𝑥 ·Q 𝑣)))
653impb 1177 . . 3 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ∃𝑥 ∈ (1st𝐴)∃𝑣 ∈ (1st ‘(𝐵 +P 𝐶))𝑤 = (𝑥 ·Q 𝑣)))
7 df-iplp 7269 . . . . . . . . . . 11 +P = (𝑤P, 𝑥P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑤) ∧ ∈ (1st𝑥) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑤) ∧ ∈ (2nd𝑥) ∧ 𝑓 = (𝑔 +Q ))}⟩)
8 addclnq 7176 . . . . . . . . . . 11 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
97, 8genpelvl 7313 . . . . . . . . . 10 ((𝐵P𝐶P) → (𝑣 ∈ (1st ‘(𝐵 +P 𝐶)) ↔ ∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐶)𝑣 = (𝑦 +Q 𝑧)))
1093adant1 999 . . . . . . . . 9 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (1st ‘(𝐵 +P 𝐶)) ↔ ∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐶)𝑣 = (𝑦 +Q 𝑧)))
1110adantr 274 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → (𝑣 ∈ (1st ‘(𝐵 +P 𝐶)) ↔ ∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐶)𝑣 = (𝑦 +Q 𝑧)))
12 prop 7276 . . . . . . . . . . . . . . . . 17 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
13 elprnql 7282 . . . . . . . . . . . . . . . . 17 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑥 ∈ (1st𝐴)) → 𝑥Q)
1412, 13sylan 281 . . . . . . . . . . . . . . . 16 ((𝐴P𝑥 ∈ (1st𝐴)) → 𝑥Q)
15143ad2antl1 1143 . . . . . . . . . . . . . . 15 (((𝐴P𝐵P𝐶P) ∧ 𝑥 ∈ (1st𝐴)) → 𝑥Q)
1615adantrr 470 . . . . . . . . . . . . . 14 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → 𝑥Q)
1716adantr 274 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑥Q)
18 prop 7276 . . . . . . . . . . . . . . . . . 18 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
19 elprnql 7282 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑦 ∈ (1st𝐵)) → 𝑦Q)
2018, 19sylan 281 . . . . . . . . . . . . . . . . 17 ((𝐵P𝑦 ∈ (1st𝐵)) → 𝑦Q)
21 prop 7276 . . . . . . . . . . . . . . . . . 18 (𝐶P → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
22 elprnql 7282 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐶), (2nd𝐶)⟩ ∈ P𝑧 ∈ (1st𝐶)) → 𝑧Q)
2321, 22sylan 281 . . . . . . . . . . . . . . . . 17 ((𝐶P𝑧 ∈ (1st𝐶)) → 𝑧Q)
2420, 23anim12i 336 . . . . . . . . . . . . . . . 16 (((𝐵P𝑦 ∈ (1st𝐵)) ∧ (𝐶P𝑧 ∈ (1st𝐶))) → (𝑦Q𝑧Q))
2524an4s 577 . . . . . . . . . . . . . . 15 (((𝐵P𝐶P) ∧ (𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶))) → (𝑦Q𝑧Q))
26253adantl1 1137 . . . . . . . . . . . . . 14 (((𝐴P𝐵P𝐶P) ∧ (𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶))) → (𝑦Q𝑧Q))
2726ad2ant2r 500 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑦Q𝑧Q))
28 3anass 966 . . . . . . . . . . . . 13 ((𝑥Q𝑦Q𝑧Q) ↔ (𝑥Q ∧ (𝑦Q𝑧Q)))
2917, 27, 28sylanbrc 413 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥Q𝑦Q𝑧Q))
30 simprr 521 . . . . . . . . . . . . 13 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → 𝑤 = (𝑥 ·Q 𝑣))
31 simpr 109 . . . . . . . . . . . . 13 (((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑣 = (𝑦 +Q 𝑧))
3230, 31anim12i 336 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)))
33 oveq2 5775 . . . . . . . . . . . . . . 15 (𝑣 = (𝑦 +Q 𝑧) → (𝑥 ·Q 𝑣) = (𝑥 ·Q (𝑦 +Q 𝑧)))
3433eqeq2d 2149 . . . . . . . . . . . . . 14 (𝑣 = (𝑦 +Q 𝑧) → (𝑤 = (𝑥 ·Q 𝑣) ↔ 𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧))))
3534biimpac 296 . . . . . . . . . . . . 13 ((𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧)))
36 distrnqg 7188 . . . . . . . . . . . . . 14 ((𝑥Q𝑦Q𝑧Q) → (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)))
3736eqeq2d 2149 . . . . . . . . . . . . 13 ((𝑥Q𝑦Q𝑧Q) → (𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧)) ↔ 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
3835, 37syl5ib 153 . . . . . . . . . . . 12 ((𝑥Q𝑦Q𝑧Q) → ((𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
3929, 32, 38sylc 62 . . . . . . . . . . 11 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)))
40 mulclpr 7373 . . . . . . . . . . . . . 14 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
41403adant3 1001 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐵) ∈ P)
4241ad2antrr 479 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝐴 ·P 𝐵) ∈ P)
43 mulclpr 7373 . . . . . . . . . . . . . 14 ((𝐴P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
44433adant2 1000 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
4544ad2antrr 479 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝐴 ·P 𝐶) ∈ P)
46 simpll 518 . . . . . . . . . . . . 13 (((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑦 ∈ (1st𝐵))
472, 3genpprecll 7315 . . . . . . . . . . . . . . . 16 ((𝐴P𝐵P) → ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) → (𝑥 ·Q 𝑦) ∈ (1st ‘(𝐴 ·P 𝐵))))
48473adant3 1001 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P𝐶P) → ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) → (𝑥 ·Q 𝑦) ∈ (1st ‘(𝐴 ·P 𝐵))))
4948impl 377 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P𝐶P) ∧ 𝑥 ∈ (1st𝐴)) ∧ 𝑦 ∈ (1st𝐵)) → (𝑥 ·Q 𝑦) ∈ (1st ‘(𝐴 ·P 𝐵)))
5049adantlrr 474 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ 𝑦 ∈ (1st𝐵)) → (𝑥 ·Q 𝑦) ∈ (1st ‘(𝐴 ·P 𝐵)))
5146, 50sylan2 284 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥 ·Q 𝑦) ∈ (1st ‘(𝐴 ·P 𝐵)))
52 simplr 519 . . . . . . . . . . . . 13 (((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑧 ∈ (1st𝐶))
532, 3genpprecll 7315 . . . . . . . . . . . . . . . 16 ((𝐴P𝐶P) → ((𝑥 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)) → (𝑥 ·Q 𝑧) ∈ (1st ‘(𝐴 ·P 𝐶))))
54533adant2 1000 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P𝐶P) → ((𝑥 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)) → (𝑥 ·Q 𝑧) ∈ (1st ‘(𝐴 ·P 𝐶))))
5554impl 377 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P𝐶P) ∧ 𝑥 ∈ (1st𝐴)) ∧ 𝑧 ∈ (1st𝐶)) → (𝑥 ·Q 𝑧) ∈ (1st ‘(𝐴 ·P 𝐶)))
5655adantlrr 474 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ 𝑧 ∈ (1st𝐶)) → (𝑥 ·Q 𝑧) ∈ (1st ‘(𝐴 ·P 𝐶)))
5752, 56sylan2 284 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥 ·Q 𝑧) ∈ (1st ‘(𝐴 ·P 𝐶)))
587, 8genpprecll 7315 . . . . . . . . . . . . 13 (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → (((𝑥 ·Q 𝑦) ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ (𝑥 ·Q 𝑧) ∈ (1st ‘(𝐴 ·P 𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
5958imp 123 . . . . . . . . . . . 12 ((((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) ∧ ((𝑥 ·Q 𝑦) ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ (𝑥 ·Q 𝑧) ∈ (1st ‘(𝐴 ·P 𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
6042, 45, 51, 57, 59syl22anc 1217 . . . . . . . . . . 11 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
6139, 60eqeltrd 2214 . . . . . . . . . 10 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
6261exp32 362 . . . . . . . . 9 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) → (𝑣 = (𝑦 +Q 𝑧) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))))
6362rexlimdvv 2554 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → (∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐶)𝑣 = (𝑦 +Q 𝑧) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
6411, 63sylbid 149 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → (𝑣 ∈ (1st ‘(𝐵 +P 𝐶)) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
6564exp32 362 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ (1st𝐴) → (𝑤 = (𝑥 ·Q 𝑣) → (𝑣 ∈ (1st ‘(𝐵 +P 𝐶)) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))))
6665com34 83 . . . . 5 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ (1st𝐴) → (𝑣 ∈ (1st ‘(𝐵 +P 𝐶)) → (𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))))
6766impd 252 . . . 4 ((𝐴P𝐵P𝐶P) → ((𝑥 ∈ (1st𝐴) ∧ 𝑣 ∈ (1st ‘(𝐵 +P 𝐶))) → (𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))))
6867rexlimdvv 2554 . . 3 ((𝐴P𝐵P𝐶P) → (∃𝑥 ∈ (1st𝐴)∃𝑣 ∈ (1st ‘(𝐵 +P 𝐶))𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
696, 68sylbid 149 . 2 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
7069ssrdv 3098 1 ((𝐴P𝐵P𝐶P) → (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wrex 2415  wss 3066  cop 3525  cfv 5118  (class class class)co 5767  1st c1st 6029  2nd c2nd 6030  Qcnq 7081   +Q cplq 7083   ·Q cmq 7084  Pcnp 7092   +P cpp 7094   ·P cmp 7095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-2o 6307  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154  df-enq0 7225  df-nq0 7226  df-0nq0 7227  df-plq0 7228  df-mq0 7229  df-inp 7267  df-iplp 7269  df-imp 7270
This theorem is referenced by:  distrprg  7389
  Copyright terms: Public domain W3C validator