ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem5prl GIF version

Theorem distrlem5prl 6827
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem5prl ((𝐴P𝐵P𝐶P) → (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))

Proof of Theorem distrlem5prl
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpr 6813 . . . . 5 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
213adant3 959 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐵) ∈ P)
3 mulclpr 6813 . . . . 5 ((𝐴P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
433adant2 958 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
5 df-iplp 6709 . . . . 5 +P = (𝑥P, 𝑦P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑥) ∧ ∈ (1st𝑦) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑥) ∧ ∈ (2nd𝑦) ∧ 𝑓 = (𝑔 +Q ))}⟩)
6 addclnq 6616 . . . . 5 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
75, 6genpelvl 6753 . . . 4 (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → (𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ↔ ∃𝑣 ∈ (1st ‘(𝐴 ·P 𝐵))∃𝑢 ∈ (1st ‘(𝐴 ·P 𝐶))𝑤 = (𝑣 +Q 𝑢)))
82, 4, 7syl2anc 403 . . 3 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ↔ ∃𝑣 ∈ (1st ‘(𝐴 ·P 𝐵))∃𝑢 ∈ (1st ‘(𝐴 ·P 𝐶))𝑤 = (𝑣 +Q 𝑢)))
9 df-imp 6710 . . . . . . . 8 ·P = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑤) ∧ ∈ (1st𝑣) ∧ 𝑥 = (𝑔 ·Q ))}, {𝑥Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑤) ∧ ∈ (2nd𝑣) ∧ 𝑥 = (𝑔 ·Q ))}⟩)
10 mulclnq 6617 . . . . . . . 8 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
119, 10genpelvl 6753 . . . . . . 7 ((𝐴P𝐶P) → (𝑢 ∈ (1st ‘(𝐴 ·P 𝐶)) ↔ ∃𝑓 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐶)𝑢 = (𝑓 ·Q 𝑧)))
12113adant2 958 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑢 ∈ (1st ‘(𝐴 ·P 𝐶)) ↔ ∃𝑓 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐶)𝑢 = (𝑓 ·Q 𝑧)))
1312anbi2d 452 . . . . 5 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ 𝑢 ∈ (1st ‘(𝐴 ·P 𝐶))) ↔ (𝑣 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ ∃𝑓 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐶)𝑢 = (𝑓 ·Q 𝑧))))
14 df-imp 6710 . . . . . . . . 9 ·P = (𝑤P, 𝑣P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑤) ∧ ∈ (1st𝑣) ∧ 𝑓 = (𝑔 ·Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑤) ∧ ∈ (2nd𝑣) ∧ 𝑓 = (𝑔 ·Q ))}⟩)
1514, 10genpelvl 6753 . . . . . . . 8 ((𝐴P𝐵P) → (𝑣 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑥 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑣 = (𝑥 ·Q 𝑦)))
16153adant3 959 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑥 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑣 = (𝑥 ·Q 𝑦)))
17 distrlem4prl 6825 . . . . . . . . . . . . . . 15 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))
18 oveq12 5546 . . . . . . . . . . . . . . . . . 18 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑣 +Q 𝑢) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
1918eqeq2d 2093 . . . . . . . . . . . . . . . . 17 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) ↔ 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
20 eleq1 2142 . . . . . . . . . . . . . . . . 17 (𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → (𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
2119, 20syl6bi 161 . . . . . . . . . . . . . . . 16 ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → (𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))))
2221imp 122 . . . . . . . . . . . . . . 15 (((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) ∧ 𝑤 = (𝑣 +Q 𝑢)) → (𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
2317, 22syl5ibrcom 155 . . . . . . . . . . . . . 14 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) ∧ 𝑤 = (𝑣 +Q 𝑢)) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
2423exp4b 359 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶))) → ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
2524com3l 80 . . . . . . . . . . . 12 (((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶))) → ((𝑣 = (𝑥 ·Q 𝑦) ∧ 𝑢 = (𝑓 ·Q 𝑧)) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
2625exp4b 359 . . . . . . . . . . 11 ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) → ((𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)) → (𝑣 = (𝑥 ·Q 𝑦) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))))))
2726com23 77 . . . . . . . . . 10 ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) → (𝑣 = (𝑥 ·Q 𝑦) → ((𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))))))
2827rexlimivv 2483 . . . . . . . . 9 (∃𝑥 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑣 = (𝑥 ·Q 𝑦) → ((𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)) → (𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))))))
2928rexlimdvv 2484 . . . . . . . 8 (∃𝑥 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑣 = (𝑥 ·Q 𝑦) → (∃𝑓 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐶)𝑢 = (𝑓 ·Q 𝑧) → ((𝐴P𝐵P𝐶P) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
3029com3r 78 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (∃𝑥 ∈ (1st𝐴)∃𝑦 ∈ (1st𝐵)𝑣 = (𝑥 ·Q 𝑦) → (∃𝑓 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐶)𝑢 = (𝑓 ·Q 𝑧) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
3116, 30sylbid 148 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (1st ‘(𝐴 ·P 𝐵)) → (∃𝑓 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐶)𝑢 = (𝑓 ·Q 𝑧) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))))
3231impd 251 . . . . 5 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ ∃𝑓 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐶)𝑢 = (𝑓 ·Q 𝑧)) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))))
3313, 32sylbid 148 . . . 4 ((𝐴P𝐵P𝐶P) → ((𝑣 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ 𝑢 ∈ (1st ‘(𝐴 ·P 𝐶))) → (𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))))
3433rexlimdvv 2484 . . 3 ((𝐴P𝐵P𝐶P) → (∃𝑣 ∈ (1st ‘(𝐴 ·P 𝐵))∃𝑢 ∈ (1st ‘(𝐴 ·P 𝐶))𝑤 = (𝑣 +Q 𝑢) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
358, 34sylbid 148 . 2 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) → 𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
3635ssrdv 3006 1 ((𝐴P𝐵P𝐶P) → (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 920   = wceq 1285  wcel 1434  wrex 2350  wss 2974  cfv 4926  (class class class)co 5537  1st c1st 5790   +Q cplq 6523   ·Q cmq 6524  Pcnp 6532   +P cpp 6534   ·P cmp 6535
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3895  ax-sep 3898  ax-nul 3906  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-setind 4282  ax-iinf 4331
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3253  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-int 3639  df-iun 3682  df-br 3788  df-opab 3842  df-mpt 3843  df-tr 3878  df-eprel 4046  df-id 4050  df-po 4053  df-iso 4054  df-iord 4123  df-on 4125  df-suc 4128  df-iom 4334  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-f1 4931  df-fo 4932  df-f1o 4933  df-fv 4934  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 6013  df-1o 6059  df-2o 6060  df-oadd 6063  df-omul 6064  df-er 6165  df-ec 6167  df-qs 6171  df-ni 6545  df-pli 6546  df-mi 6547  df-lti 6548  df-plpq 6585  df-mpq 6586  df-enq 6588  df-nqqs 6589  df-plqqs 6590  df-mqqs 6591  df-1nqqs 6592  df-rq 6593  df-ltnqqs 6594  df-enq0 6665  df-nq0 6666  df-0nq0 6667  df-plq0 6668  df-mq0 6669  df-inp 6707  df-iplp 6709  df-imp 6710
This theorem is referenced by:  distrprg  6829
  Copyright terms: Public domain W3C validator