ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrnq0 GIF version

Theorem distrnq0 7267
Description: Multiplication of nonnegative fractions is distributive. (Contributed by Jim Kingdon, 27-Nov-2019.)
Assertion
Ref Expression
distrnq0 ((𝐴Q0𝐵Q0𝐶Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶)))

Proof of Theorem distrnq0
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nq0 7233 . . . 4 Q0 = ((ω × N) / ~Q0 )
2 oveq1 5781 . . . . . . 7 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
32oveq2d 5790 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → (𝐴 ·Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = (𝐴 ·Q0 (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )))
4 oveq2 5782 . . . . . . 7 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → (𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = (𝐴 ·Q0 𝐵))
54oveq1d 5789 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → ((𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 (𝐴 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 )))
63, 5eqeq12d 2154 . . . . 5 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → ((𝐴 ·Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = ((𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 (𝐴 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) ↔ (𝐴 ·Q0 (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))))
76imbi2d 229 . . . 4 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → ((𝐴Q0 → (𝐴 ·Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = ((𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 (𝐴 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))) ↔ (𝐴Q0 → (𝐴 ·Q0 (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 )))))
8 oveq2 5782 . . . . . . 7 ([⟨𝑣, 𝑢⟩] ~Q0 = 𝐶 → (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐵 +Q0 𝐶))
98oveq2d 5790 . . . . . 6 ([⟨𝑣, 𝑢⟩] ~Q0 = 𝐶 → (𝐴 ·Q0 (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = (𝐴 ·Q0 (𝐵 +Q0 𝐶)))
10 oveq2 5782 . . . . . . 7 ([⟨𝑣, 𝑢⟩] ~Q0 = 𝐶 → (𝐴 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐴 ·Q0 𝐶))
1110oveq2d 5790 . . . . . 6 ([⟨𝑣, 𝑢⟩] ~Q0 = 𝐶 → ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶)))
129, 11eqeq12d 2154 . . . . 5 ([⟨𝑣, 𝑢⟩] ~Q0 = 𝐶 → ((𝐴 ·Q0 (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) ↔ (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶))))
1312imbi2d 229 . . . 4 ([⟨𝑣, 𝑢⟩] ~Q0 = 𝐶 → ((𝐴Q0 → (𝐴 ·Q0 (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))) ↔ (𝐴Q0 → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶)))))
14 oveq1 5781 . . . . . . . 8 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = (𝐴 ·Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )))
15 oveq1 5781 . . . . . . . . 9 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = (𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
16 oveq1 5781 . . . . . . . . 9 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐴 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
1715, 16oveq12d 5792 . . . . . . . 8 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = ((𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 (𝐴 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 )))
1814, 17eqeq12d 2154 . . . . . . 7 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = (([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) ↔ (𝐴 ·Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = ((𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 (𝐴 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))))
1918imbi2d 229 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → ((((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = (([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))) ↔ (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝐴 ·Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = ((𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 (𝐴 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 )))))
20 an42 576 . . . . . . . . . . . 12 (((𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) ↔ ((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)))
2120anbi2i 452 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ ((𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω))) ↔ ((𝑥 ∈ ω ∧ 𝑦N) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N))))
22 3anass 966 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) ↔ ((𝑥 ∈ ω ∧ 𝑦N) ∧ ((𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω))))
23 3anass 966 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) ↔ ((𝑥 ∈ ω ∧ 𝑦N) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N))))
2421, 22, 233bitr4i 211 . . . . . . . . . 10 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) ↔ ((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)))
25 pinn 7117 . . . . . . . . . . . . . 14 (𝑦N𝑦 ∈ ω)
26 nnmcl 6377 . . . . . . . . . . . . . 14 ((𝑦 ∈ ω ∧ 𝑥 ∈ ω) → (𝑦 ·o 𝑥) ∈ ω)
2725, 26sylan 281 . . . . . . . . . . . . 13 ((𝑦N𝑥 ∈ ω) → (𝑦 ·o 𝑥) ∈ ω)
2827ancoms 266 . . . . . . . . . . . 12 ((𝑥 ∈ ω ∧ 𝑦N) → (𝑦 ·o 𝑥) ∈ ω)
29 pinn 7117 . . . . . . . . . . . . 13 (𝑢N𝑢 ∈ ω)
30 nnmcl 6377 . . . . . . . . . . . . 13 ((𝑧 ∈ ω ∧ 𝑢 ∈ ω) → (𝑧 ·o 𝑢) ∈ ω)
3129, 30sylan2 284 . . . . . . . . . . . 12 ((𝑧 ∈ ω ∧ 𝑢N) → (𝑧 ·o 𝑢) ∈ ω)
32 pinn 7117 . . . . . . . . . . . . 13 (𝑤N𝑤 ∈ ω)
33 nnmcl 6377 . . . . . . . . . . . . 13 ((𝑤 ∈ ω ∧ 𝑣 ∈ ω) → (𝑤 ·o 𝑣) ∈ ω)
3432, 33sylan 281 . . . . . . . . . . . 12 ((𝑤N𝑣 ∈ ω) → (𝑤 ·o 𝑣) ∈ ω)
35 nndi 6382 . . . . . . . . . . . 12 (((𝑦 ·o 𝑥) ∈ ω ∧ (𝑧 ·o 𝑢) ∈ ω ∧ (𝑤 ·o 𝑣) ∈ ω) → ((𝑦 ·o 𝑥) ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))) = (((𝑦 ·o 𝑥) ·o (𝑧 ·o 𝑢)) +o ((𝑦 ·o 𝑥) ·o (𝑤 ·o 𝑣))))
3628, 31, 34, 35syl3an 1258 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → ((𝑦 ·o 𝑥) ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))) = (((𝑦 ·o 𝑥) ·o (𝑧 ·o 𝑢)) +o ((𝑦 ·o 𝑥) ·o (𝑤 ·o 𝑣))))
37 simp1r 1006 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → 𝑦N)
38 simp1l 1005 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → 𝑥 ∈ ω)
39313ad2ant2 1003 . . . . . . . . . . . . 13 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → (𝑧 ·o 𝑢) ∈ ω)
40343ad2ant3 1004 . . . . . . . . . . . . 13 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → (𝑤 ·o 𝑣) ∈ ω)
41 nnacl 6376 . . . . . . . . . . . . 13 (((𝑧 ·o 𝑢) ∈ ω ∧ (𝑤 ·o 𝑣) ∈ ω) → ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)) ∈ ω)
4239, 40, 41syl2anc 408 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)) ∈ ω)
43 nnmass 6383 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ 𝑥 ∈ ω ∧ ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)) ∈ ω) → ((𝑦 ·o 𝑥) ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))) = (𝑦 ·o (𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))))
4425, 43syl3an1 1249 . . . . . . . . . . . 12 ((𝑦N𝑥 ∈ ω ∧ ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)) ∈ ω) → ((𝑦 ·o 𝑥) ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))) = (𝑦 ·o (𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))))
4537, 38, 42, 44syl3anc 1216 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → ((𝑦 ·o 𝑥) ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))) = (𝑦 ·o (𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))))
46 nnmcom 6385 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ·o 𝑦) = (𝑦 ·o 𝑥))
4725, 46sylan2 284 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ω ∧ 𝑦N) → (𝑥 ·o 𝑦) = (𝑦 ·o 𝑥))
4847oveq1d 5789 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ω ∧ 𝑦N) → ((𝑥 ·o 𝑦) ·o (𝑧 ·o 𝑢)) = ((𝑦 ·o 𝑥) ·o (𝑧 ·o 𝑢)))
4948adantr 274 . . . . . . . . . . . . . 14 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N)) → ((𝑥 ·o 𝑦) ·o (𝑧 ·o 𝑢)) = ((𝑦 ·o 𝑥) ·o (𝑧 ·o 𝑢)))
50 simpll 518 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N)) → 𝑥 ∈ ω)
5125ad2antlr 480 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N)) → 𝑦 ∈ ω)
52 simprl 520 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N)) → 𝑧 ∈ ω)
53 nnmcom 6385 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ ω ∧ 𝑔 ∈ ω) → (𝑓 ·o 𝑔) = (𝑔 ·o 𝑓))
5453adantl 275 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑓 ·o 𝑔) = (𝑔 ·o 𝑓))
55 nnmass 6383 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ ω ∧ 𝑔 ∈ ω ∧ ∈ ω) → ((𝑓 ·o 𝑔) ·o ) = (𝑓 ·o (𝑔 ·o )))
5655adantl 275 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω ∧ ∈ ω)) → ((𝑓 ·o 𝑔) ·o ) = (𝑓 ·o (𝑔 ·o )))
57 simprr 521 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N)) → 𝑢N)
5857, 29syl 14 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N)) → 𝑢 ∈ ω)
59 nnmcl 6377 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ ω ∧ 𝑔 ∈ ω) → (𝑓 ·o 𝑔) ∈ ω)
6059adantl 275 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑓 ·o 𝑔) ∈ ω)
6150, 51, 52, 54, 56, 58, 60caov4d 5955 . . . . . . . . . . . . . 14 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N)) → ((𝑥 ·o 𝑦) ·o (𝑧 ·o 𝑢)) = ((𝑥 ·o 𝑧) ·o (𝑦 ·o 𝑢)))
6249, 61eqtr3d 2174 . . . . . . . . . . . . 13 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N)) → ((𝑦 ·o 𝑥) ·o (𝑧 ·o 𝑢)) = ((𝑥 ·o 𝑧) ·o (𝑦 ·o 𝑢)))
63623adant3 1001 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → ((𝑦 ·o 𝑥) ·o (𝑧 ·o 𝑢)) = ((𝑥 ·o 𝑧) ·o (𝑦 ·o 𝑢)))
6425ad2antlr 480 . . . . . . . . . . . . . 14 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑤N𝑣 ∈ ω)) → 𝑦 ∈ ω)
65 simpll 518 . . . . . . . . . . . . . 14 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑤N𝑣 ∈ ω)) → 𝑥 ∈ ω)
66 simprl 520 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑤N𝑣 ∈ ω)) → 𝑤N)
6766, 32syl 14 . . . . . . . . . . . . . 14 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑤N𝑣 ∈ ω)) → 𝑤 ∈ ω)
6853adantl 275 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑤N𝑣 ∈ ω)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑓 ·o 𝑔) = (𝑔 ·o 𝑓))
6955adantl 275 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑤N𝑣 ∈ ω)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω ∧ ∈ ω)) → ((𝑓 ·o 𝑔) ·o ) = (𝑓 ·o (𝑔 ·o )))
70 simprr 521 . . . . . . . . . . . . . 14 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑤N𝑣 ∈ ω)) → 𝑣 ∈ ω)
7159adantl 275 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑤N𝑣 ∈ ω)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑓 ·o 𝑔) ∈ ω)
7264, 65, 67, 68, 69, 70, 71caov4d 5955 . . . . . . . . . . . . 13 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑤N𝑣 ∈ ω)) → ((𝑦 ·o 𝑥) ·o (𝑤 ·o 𝑣)) = ((𝑦 ·o 𝑤) ·o (𝑥 ·o 𝑣)))
73723adant2 1000 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → ((𝑦 ·o 𝑥) ·o (𝑤 ·o 𝑣)) = ((𝑦 ·o 𝑤) ·o (𝑥 ·o 𝑣)))
7463, 73oveq12d 5792 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → (((𝑦 ·o 𝑥) ·o (𝑧 ·o 𝑢)) +o ((𝑦 ·o 𝑥) ·o (𝑤 ·o 𝑣))) = (((𝑥 ·o 𝑧) ·o (𝑦 ·o 𝑢)) +o ((𝑦 ·o 𝑤) ·o (𝑥 ·o 𝑣))))
7536, 45, 743eqtr3d 2180 . . . . . . . . . 10 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → (𝑦 ·o (𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))) = (((𝑥 ·o 𝑧) ·o (𝑦 ·o 𝑢)) +o ((𝑦 ·o 𝑤) ·o (𝑥 ·o 𝑣))))
7624, 75sylbir 134 . . . . . . . . 9 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝑦 ·o (𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))) = (((𝑥 ·o 𝑧) ·o (𝑦 ·o 𝑢)) +o ((𝑦 ·o 𝑤) ·o (𝑥 ·o 𝑣))))
7737, 25syl 14 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → 𝑦 ∈ ω)
78 mulpiord 7125 . . . . . . . . . . . . . . . 16 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) = (𝑤 ·o 𝑢))
7978ancoms 266 . . . . . . . . . . . . . . 15 ((𝑢N𝑤N) → (𝑤 ·N 𝑢) = (𝑤 ·o 𝑢))
8079ad2ant2lr 501 . . . . . . . . . . . . . 14 (((𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → (𝑤 ·N 𝑢) = (𝑤 ·o 𝑢))
81803adant1 999 . . . . . . . . . . . . 13 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → (𝑤 ·N 𝑢) = (𝑤 ·o 𝑢))
82663adant2 1000 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → 𝑤N)
83573adant3 1001 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → 𝑢N)
84 mulclpi 7136 . . . . . . . . . . . . . . 15 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) ∈ N)
8582, 83, 84syl2anc 408 . . . . . . . . . . . . . 14 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → (𝑤 ·N 𝑢) ∈ N)
86 pinn 7117 . . . . . . . . . . . . . 14 ((𝑤 ·N 𝑢) ∈ N → (𝑤 ·N 𝑢) ∈ ω)
8785, 86syl 14 . . . . . . . . . . . . 13 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → (𝑤 ·N 𝑢) ∈ ω)
8881, 87eqeltrrd 2217 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → (𝑤 ·o 𝑢) ∈ ω)
89 nnmass 6383 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝑦 ∈ ω ∧ (𝑤 ·o 𝑢) ∈ ω) → ((𝑦 ·o 𝑦) ·o (𝑤 ·o 𝑢)) = (𝑦 ·o (𝑦 ·o (𝑤 ·o 𝑢))))
9077, 77, 88, 89syl3anc 1216 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → ((𝑦 ·o 𝑦) ·o (𝑤 ·o 𝑢)) = (𝑦 ·o (𝑦 ·o (𝑤 ·o 𝑢))))
9182, 32syl 14 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → 𝑤 ∈ ω)
9253adantl 275 . . . . . . . . . . . 12 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑓 ·o 𝑔) = (𝑔 ·o 𝑓))
9355adantl 275 . . . . . . . . . . . 12 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω ∧ ∈ ω)) → ((𝑓 ·o 𝑔) ·o ) = (𝑓 ·o (𝑔 ·o )))
9483, 29syl 14 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → 𝑢 ∈ ω)
9559adantl 275 . . . . . . . . . . . 12 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑓 ·o 𝑔) ∈ ω)
9677, 77, 91, 92, 93, 94, 95caov4d 5955 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → ((𝑦 ·o 𝑦) ·o (𝑤 ·o 𝑢)) = ((𝑦 ·o 𝑤) ·o (𝑦 ·o 𝑢)))
9790, 96eqtr3d 2174 . . . . . . . . . 10 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → (𝑦 ·o (𝑦 ·o (𝑤 ·o 𝑢))) = ((𝑦 ·o 𝑤) ·o (𝑦 ·o 𝑢)))
9824, 97sylbir 134 . . . . . . . . 9 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝑦 ·o (𝑦 ·o (𝑤 ·o 𝑢))) = ((𝑦 ·o 𝑤) ·o (𝑦 ·o 𝑢)))
99 opeq12 3707 . . . . . . . . . 10 (((𝑦 ·o (𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))) = (((𝑥 ·o 𝑧) ·o (𝑦 ·o 𝑢)) +o ((𝑦 ·o 𝑤) ·o (𝑥 ·o 𝑣))) ∧ (𝑦 ·o (𝑦 ·o (𝑤 ·o 𝑢))) = ((𝑦 ·o 𝑤) ·o (𝑦 ·o 𝑢))) → ⟨(𝑦 ·o (𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))), (𝑦 ·o (𝑦 ·o (𝑤 ·o 𝑢)))⟩ = ⟨(((𝑥 ·o 𝑧) ·o (𝑦 ·o 𝑢)) +o ((𝑦 ·o 𝑤) ·o (𝑥 ·o 𝑣))), ((𝑦 ·o 𝑤) ·o (𝑦 ·o 𝑢))⟩)
10099eceq1d 6465 . . . . . . . . 9 (((𝑦 ·o (𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))) = (((𝑥 ·o 𝑧) ·o (𝑦 ·o 𝑢)) +o ((𝑦 ·o 𝑤) ·o (𝑥 ·o 𝑣))) ∧ (𝑦 ·o (𝑦 ·o (𝑤 ·o 𝑢))) = ((𝑦 ·o 𝑤) ·o (𝑦 ·o 𝑢))) → [⟨(𝑦 ·o (𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))), (𝑦 ·o (𝑦 ·o (𝑤 ·o 𝑢)))⟩] ~Q0 = [⟨(((𝑥 ·o 𝑧) ·o (𝑦 ·o 𝑢)) +o ((𝑦 ·o 𝑤) ·o (𝑥 ·o 𝑣))), ((𝑦 ·o 𝑤) ·o (𝑦 ·o 𝑢))⟩] ~Q0 )
10176, 98, 100syl2anc 408 . . . . . . . 8 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → [⟨(𝑦 ·o (𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))), (𝑦 ·o (𝑦 ·o (𝑤 ·o 𝑢)))⟩] ~Q0 = [⟨(((𝑥 ·o 𝑧) ·o (𝑦 ·o 𝑢)) +o ((𝑦 ·o 𝑤) ·o (𝑥 ·o 𝑣))), ((𝑦 ·o 𝑤) ·o (𝑦 ·o 𝑢))⟩] ~Q0 )
102 addnnnq0 7257 . . . . . . . . . . . 12 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = [⟨((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)), (𝑤 ·o 𝑢)⟩] ~Q0 )
103102oveq2d 5790 . . . . . . . . . . 11 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)), (𝑤 ·o 𝑢)⟩] ~Q0 ))
104103adantl 275 . . . . . . . . . 10 (((𝑥 ∈ ω ∧ 𝑦N) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)), (𝑤 ·o 𝑢)⟩] ~Q0 ))
10531, 34, 41syl2an 287 . . . . . . . . . . . . 13 (((𝑧 ∈ ω ∧ 𝑢N) ∧ (𝑤N𝑣 ∈ ω)) → ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)) ∈ ω)
106105an42s 578 . . . . . . . . . . . 12 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)) ∈ ω)
10784ad2ant2l 499 . . . . . . . . . . . . 13 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝑤 ·N 𝑢) ∈ N)
10878eleq1d 2208 . . . . . . . . . . . . . 14 ((𝑤N𝑢N) → ((𝑤 ·N 𝑢) ∈ N ↔ (𝑤 ·o 𝑢) ∈ N))
109108ad2ant2l 499 . . . . . . . . . . . . 13 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ((𝑤 ·N 𝑢) ∈ N ↔ (𝑤 ·o 𝑢) ∈ N))
110107, 109mpbid 146 . . . . . . . . . . . 12 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝑤 ·o 𝑢) ∈ N)
111106, 110jca 304 . . . . . . . . . . 11 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)) ∈ ω ∧ (𝑤 ·o 𝑢) ∈ N))
112 mulnnnq0 7258 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)) ∈ ω ∧ (𝑤 ·o 𝑢) ∈ N)) → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)), (𝑤 ·o 𝑢)⟩] ~Q0 ) = [⟨(𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))), (𝑦 ·o (𝑤 ·o 𝑢))⟩] ~Q0 )
113 nnmcl 6377 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ω ∧ ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)) ∈ ω) → (𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))) ∈ ω)
114 simpl 108 . . . . . . . . . . . . . . . . 17 ((𝑦N ∧ (𝑤 ·o 𝑢) ∈ N) → 𝑦N)
115 mulpiord 7125 . . . . . . . . . . . . . . . . . 18 ((𝑦N ∧ (𝑤 ·o 𝑢) ∈ N) → (𝑦 ·N (𝑤 ·o 𝑢)) = (𝑦 ·o (𝑤 ·o 𝑢)))
116 mulclpi 7136 . . . . . . . . . . . . . . . . . 18 ((𝑦N ∧ (𝑤 ·o 𝑢) ∈ N) → (𝑦 ·N (𝑤 ·o 𝑢)) ∈ N)
117115, 116eqeltrrd 2217 . . . . . . . . . . . . . . . . 17 ((𝑦N ∧ (𝑤 ·o 𝑢) ∈ N) → (𝑦 ·o (𝑤 ·o 𝑢)) ∈ N)
118114, 117jca 304 . . . . . . . . . . . . . . . 16 ((𝑦N ∧ (𝑤 ·o 𝑢) ∈ N) → (𝑦N ∧ (𝑦 ·o (𝑤 ·o 𝑢)) ∈ N))
119113, 118anim12i 336 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ω ∧ ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)) ∈ ω) ∧ (𝑦N ∧ (𝑤 ·o 𝑢) ∈ N)) → ((𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))) ∈ ω ∧ (𝑦N ∧ (𝑦 ·o (𝑤 ·o 𝑢)) ∈ N)))
120 an12 550 . . . . . . . . . . . . . . . 16 (((𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))) ∈ ω ∧ (𝑦N ∧ (𝑦 ·o (𝑤 ·o 𝑢)) ∈ N)) ↔ (𝑦N ∧ ((𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))) ∈ ω ∧ (𝑦 ·o (𝑤 ·o 𝑢)) ∈ N)))
121 3anass 966 . . . . . . . . . . . . . . . 16 ((𝑦N ∧ (𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))) ∈ ω ∧ (𝑦 ·o (𝑤 ·o 𝑢)) ∈ N) ↔ (𝑦N ∧ ((𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))) ∈ ω ∧ (𝑦 ·o (𝑤 ·o 𝑢)) ∈ N)))
122120, 121bitr4i 186 . . . . . . . . . . . . . . 15 (((𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))) ∈ ω ∧ (𝑦N ∧ (𝑦 ·o (𝑤 ·o 𝑢)) ∈ N)) ↔ (𝑦N ∧ (𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))) ∈ ω ∧ (𝑦 ·o (𝑤 ·o 𝑢)) ∈ N))
123119, 122sylib 121 . . . . . . . . . . . . . 14 (((𝑥 ∈ ω ∧ ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)) ∈ ω) ∧ (𝑦N ∧ (𝑤 ·o 𝑢) ∈ N)) → (𝑦N ∧ (𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))) ∈ ω ∧ (𝑦 ·o (𝑤 ·o 𝑢)) ∈ N))
124123an4s 577 . . . . . . . . . . . . 13 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)) ∈ ω ∧ (𝑤 ·o 𝑢) ∈ N)) → (𝑦N ∧ (𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))) ∈ ω ∧ (𝑦 ·o (𝑤 ·o 𝑢)) ∈ N))
125 mulcanenq0ec 7253 . . . . . . . . . . . . 13 ((𝑦N ∧ (𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))) ∈ ω ∧ (𝑦 ·o (𝑤 ·o 𝑢)) ∈ N) → [⟨(𝑦 ·o (𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))), (𝑦 ·o (𝑦 ·o (𝑤 ·o 𝑢)))⟩] ~Q0 = [⟨(𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))), (𝑦 ·o (𝑤 ·o 𝑢))⟩] ~Q0 )
126124, 125syl 14 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)) ∈ ω ∧ (𝑤 ·o 𝑢) ∈ N)) → [⟨(𝑦 ·o (𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))), (𝑦 ·o (𝑦 ·o (𝑤 ·o 𝑢)))⟩] ~Q0 = [⟨(𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))), (𝑦 ·o (𝑤 ·o 𝑢))⟩] ~Q0 )
127112, 126eqtr4d 2175 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)) ∈ ω ∧ (𝑤 ·o 𝑢) ∈ N)) → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)), (𝑤 ·o 𝑢)⟩] ~Q0 ) = [⟨(𝑦 ·o (𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))), (𝑦 ·o (𝑦 ·o (𝑤 ·o 𝑢)))⟩] ~Q0 )
128111, 127sylan2 284 . . . . . . . . . 10 (((𝑥 ∈ ω ∧ 𝑦N) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)), (𝑤 ·o 𝑢)⟩] ~Q0 ) = [⟨(𝑦 ·o (𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))), (𝑦 ·o (𝑦 ·o (𝑤 ·o 𝑢)))⟩] ~Q0 )
129104, 128eqtrd 2172 . . . . . . . . 9 (((𝑥 ∈ ω ∧ 𝑦N) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = [⟨(𝑦 ·o (𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))), (𝑦 ·o (𝑦 ·o (𝑤 ·o 𝑢)))⟩] ~Q0 )
1301293impb 1177 . . . . . . . 8 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = [⟨(𝑦 ·o (𝑥 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))), (𝑦 ·o (𝑦 ·o (𝑤 ·o 𝑢)))⟩] ~Q0 )
131 mulnnnq0 7258 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩] ~Q0 )
132 mulnnnq0 7258 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = [⟨(𝑥 ·o 𝑣), (𝑦 ·o 𝑢)⟩] ~Q0 )
133131, 132oveqan12d 5793 . . . . . . . . . 10 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ ((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑣 ∈ ω ∧ 𝑢N))) → (([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = ([⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩] ~Q0 +Q0 [⟨(𝑥 ·o 𝑣), (𝑦 ·o 𝑢)⟩] ~Q0 ))
134 nnmcl 6377 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ 𝑧 ∈ ω) → (𝑥 ·o 𝑧) ∈ ω)
135 mulpiord 7125 . . . . . . . . . . . . . 14 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) = (𝑦 ·o 𝑤))
136 mulclpi 7136 . . . . . . . . . . . . . 14 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
137135, 136eqeltrrd 2217 . . . . . . . . . . . . 13 ((𝑦N𝑤N) → (𝑦 ·o 𝑤) ∈ N)
138134, 137anim12i 336 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝑦N𝑤N)) → ((𝑥 ·o 𝑧) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N))
139138an4s 577 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ((𝑥 ·o 𝑧) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N))
140 nnmcl 6377 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ 𝑣 ∈ ω) → (𝑥 ·o 𝑣) ∈ ω)
141 mulpiord 7125 . . . . . . . . . . . . . 14 ((𝑦N𝑢N) → (𝑦 ·N 𝑢) = (𝑦 ·o 𝑢))
142 mulclpi 7136 . . . . . . . . . . . . . 14 ((𝑦N𝑢N) → (𝑦 ·N 𝑢) ∈ N)
143141, 142eqeltrrd 2217 . . . . . . . . . . . . 13 ((𝑦N𝑢N) → (𝑦 ·o 𝑢) ∈ N)
144140, 143anim12i 336 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑣 ∈ ω) ∧ (𝑦N𝑢N)) → ((𝑥 ·o 𝑣) ∈ ω ∧ (𝑦 ·o 𝑢) ∈ N))
145144an4s 577 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ((𝑥 ·o 𝑣) ∈ ω ∧ (𝑦 ·o 𝑢) ∈ N))
146 addnnnq0 7257 . . . . . . . . . . 11 ((((𝑥 ·o 𝑧) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N) ∧ ((𝑥 ·o 𝑣) ∈ ω ∧ (𝑦 ·o 𝑢) ∈ N)) → ([⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩] ~Q0 +Q0 [⟨(𝑥 ·o 𝑣), (𝑦 ·o 𝑢)⟩] ~Q0 ) = [⟨(((𝑥 ·o 𝑧) ·o (𝑦 ·o 𝑢)) +o ((𝑦 ·o 𝑤) ·o (𝑥 ·o 𝑣))), ((𝑦 ·o 𝑤) ·o (𝑦 ·o 𝑢))⟩] ~Q0 )
147139, 145, 146syl2an 287 . . . . . . . . . 10 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ ((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ([⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩] ~Q0 +Q0 [⟨(𝑥 ·o 𝑣), (𝑦 ·o 𝑢)⟩] ~Q0 ) = [⟨(((𝑥 ·o 𝑧) ·o (𝑦 ·o 𝑢)) +o ((𝑦 ·o 𝑤) ·o (𝑥 ·o 𝑣))), ((𝑦 ·o 𝑤) ·o (𝑦 ·o 𝑢))⟩] ~Q0 )
148133, 147eqtrd 2172 . . . . . . . . 9 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ ((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑣 ∈ ω ∧ 𝑢N))) → (([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = [⟨(((𝑥 ·o 𝑧) ·o (𝑦 ·o 𝑢)) +o ((𝑦 ·o 𝑤) ·o (𝑥 ·o 𝑣))), ((𝑦 ·o 𝑤) ·o (𝑦 ·o 𝑢))⟩] ~Q0 )
1491483impdi 1271 . . . . . . . 8 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = [⟨(((𝑥 ·o 𝑧) ·o (𝑦 ·o 𝑢)) +o ((𝑦 ·o 𝑤) ·o (𝑥 ·o 𝑣))), ((𝑦 ·o 𝑤) ·o (𝑦 ·o 𝑢))⟩] ~Q0 )
150101, 130, 1493eqtr4d 2182 . . . . . . 7 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = (([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 )))
1511503expib 1184 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦N) → (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = (([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))))
1521, 19, 151ecoptocl 6516 . . . . 5 (𝐴Q0 → (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝐴 ·Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = ((𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 (𝐴 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))))
153152com12 30 . . . 4 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝐴Q0 → (𝐴 ·Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = ((𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 (𝐴 ·Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))))
1541, 7, 13, 1532ecoptocl 6517 . . 3 ((𝐵Q0𝐶Q0) → (𝐴Q0 → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶))))
155154com12 30 . 2 (𝐴Q0 → ((𝐵Q0𝐶Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶))))
1561553impib 1179 1 ((𝐴Q0𝐵Q0𝐶Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  cop 3530  ωcom 4504  (class class class)co 5774   +o coa 6310   ·o comu 6311  [cec 6427  Ncnpi 7080   ·N cmi 7082   ~Q0 ceq0 7094  Q0cnq0 7095   +Q0 cplq0 7097   ·Q0 cmq0 7098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-mi 7114  df-enq0 7232  df-nq0 7233  df-plq0 7235  df-mq0 7236
This theorem is referenced by:  distnq0r  7271
  Copyright terms: Public domain W3C validator