![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > divalg2 | GIF version |
Description: The division algorithm (theorem) for a positive divisor. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
divalg2 | ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑟))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 8503 | . . . 4 ⊢ (𝐷 ∈ ℕ → 𝐷 ∈ ℤ) | |
2 | nnne0 8186 | . . . 4 ⊢ (𝐷 ∈ ℕ → 𝐷 ≠ 0) | |
3 | 1, 2 | jca 300 | . . 3 ⊢ (𝐷 ∈ ℕ → (𝐷 ∈ ℤ ∧ 𝐷 ≠ 0)) |
4 | divalg 10531 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) | |
5 | divalgb 10532 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁 − 𝑟)))) | |
6 | 4, 5 | mpbid 145 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁 − 𝑟))) |
7 | 6 | 3expb 1140 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝐷 ∈ ℤ ∧ 𝐷 ≠ 0)) → ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁 − 𝑟))) |
8 | 3, 7 | sylan2 280 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁 − 𝑟))) |
9 | nnre 8165 | . . . . . . 7 ⊢ (𝐷 ∈ ℕ → 𝐷 ∈ ℝ) | |
10 | nnnn0 8414 | . . . . . . . 8 ⊢ (𝐷 ∈ ℕ → 𝐷 ∈ ℕ0) | |
11 | 10 | nn0ge0d 8463 | . . . . . . 7 ⊢ (𝐷 ∈ ℕ → 0 ≤ 𝐷) |
12 | 9, 11 | absidd 10254 | . . . . . 6 ⊢ (𝐷 ∈ ℕ → (abs‘𝐷) = 𝐷) |
13 | 12 | breq2d 3817 | . . . . 5 ⊢ (𝐷 ∈ ℕ → (𝑟 < (abs‘𝐷) ↔ 𝑟 < 𝐷)) |
14 | 13 | anbi1d 453 | . . . 4 ⊢ (𝐷 ∈ ℕ → ((𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁 − 𝑟)) ↔ (𝑟 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑟)))) |
15 | 14 | reubidv 2542 | . . 3 ⊢ (𝐷 ∈ ℕ → (∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁 − 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑟)))) |
16 | 15 | adantl 271 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁 − 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑟)))) |
17 | 8, 16 | mpbid 145 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑟))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∧ w3a 920 = wceq 1285 ∈ wcel 1434 ≠ wne 2249 ∃wrex 2354 ∃!wreu 2355 class class class wbr 3805 ‘cfv 4952 (class class class)co 5563 0cc0 7095 + caddc 7098 · cmul 7100 < clt 7267 ≤ cle 7268 − cmin 7398 ℕcn 8158 ℕ0cn0 8407 ℤcz 8484 abscabs 10084 ∥ cdvds 10403 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3913 ax-sep 3916 ax-nul 3924 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-iinf 4357 ax-cnex 7181 ax-resscn 7182 ax-1cn 7183 ax-1re 7184 ax-icn 7185 ax-addcl 7186 ax-addrcl 7187 ax-mulcl 7188 ax-mulrcl 7189 ax-addcom 7190 ax-mulcom 7191 ax-addass 7192 ax-mulass 7193 ax-distr 7194 ax-i2m1 7195 ax-0lt1 7196 ax-1rid 7197 ax-0id 7198 ax-rnegex 7199 ax-precex 7200 ax-cnre 7201 ax-pre-ltirr 7202 ax-pre-ltwlin 7203 ax-pre-lttrn 7204 ax-pre-apti 7205 ax-pre-ltadd 7206 ax-pre-mulgt0 7207 ax-pre-mulext 7208 ax-arch 7209 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2612 df-sbc 2825 df-csb 2918 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-nul 3268 df-if 3369 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-int 3657 df-iun 3700 df-br 3806 df-opab 3860 df-mpt 3861 df-tr 3896 df-id 4076 df-po 4079 df-iso 4080 df-iord 4149 df-on 4151 df-ilim 4152 df-suc 4154 df-iom 4360 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-res 4403 df-ima 4404 df-iota 4917 df-fun 4954 df-fn 4955 df-f 4956 df-f1 4957 df-fo 4958 df-f1o 4959 df-fv 4960 df-riota 5519 df-ov 5566 df-oprab 5567 df-mpt2 5568 df-1st 5818 df-2nd 5819 df-recs 5974 df-frec 6060 df-pnf 7269 df-mnf 7270 df-xr 7271 df-ltxr 7272 df-le 7273 df-sub 7400 df-neg 7401 df-reap 7794 df-ap 7801 df-div 7880 df-inn 8159 df-2 8217 df-n0 8408 df-z 8485 df-uz 8753 df-q 8838 df-rp 8868 df-fl 9404 df-mod 9457 df-iseq 9574 df-iexp 9625 df-cj 9930 df-re 9931 df-im 9932 df-rsqrt 10085 df-abs 10086 df-dvds 10404 |
This theorem is referenced by: divalgmod 10534 ndvdssub 10537 |
Copyright terms: Public domain | W3C validator |