Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemeunn GIF version

Theorem divalglemeunn 10233
 Description: Lemma for divalg 10236. Uniqueness for a positive denominator. (Contributed by Jim Kingdon, 4-Dec-2021.)
Assertion
Ref Expression
divalglemeunn ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟

Proof of Theorem divalglemeunn
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 divalglemnn 10230 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
2 nfv 1437 . . . . . 6 𝑞((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ))
3 nfre1 2382 . . . . . . 7 𝑞𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))
4 nfv 1437 . . . . . . 7 𝑞 𝑟 = 𝑠
53, 4nfim 1480 . . . . . 6 𝑞(∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) → 𝑟 = 𝑠)
6 oveq1 5547 . . . . . . . . . . . 12 (𝑞 = 𝑡 → (𝑞 · 𝐷) = (𝑡 · 𝐷))
76oveq1d 5555 . . . . . . . . . . 11 (𝑞 = 𝑡 → ((𝑞 · 𝐷) + 𝑠) = ((𝑡 · 𝐷) + 𝑠))
87eqeq2d 2067 . . . . . . . . . 10 (𝑞 = 𝑡 → (𝑁 = ((𝑞 · 𝐷) + 𝑠) ↔ 𝑁 = ((𝑡 · 𝐷) + 𝑠)))
983anbi3d 1224 . . . . . . . . 9 (𝑞 = 𝑡 → ((0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) ↔ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))))
109cbvrexv 2551 . . . . . . . 8 (∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) ↔ ∃𝑡 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠)))
11 simpr 107 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 < 𝑡) → 𝑞 < 𝑡)
12 simplr 490 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝐷 ∈ ℕ)
1312ad4antr 471 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝐷 ∈ ℕ)
14 simplrl 495 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) → 𝑟 ∈ ℤ)
1514ad3antrrr 469 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑟 ∈ ℤ)
16 simplrr 496 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) → 𝑠 ∈ ℤ)
1716ad3antrrr 469 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑠 ∈ ℤ)
18 simpr 107 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) → 𝑞 ∈ ℤ)
1918ad3antrrr 469 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑞 ∈ ℤ)
20 simplr 490 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑡 ∈ ℤ)
21 simpr1 921 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 0 ≤ 𝑠)
22 simpr2 922 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → 𝑟 < (abs‘𝐷))
2322ad2antrr 465 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑟 < (abs‘𝐷))
2413nnred 8003 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝐷 ∈ ℝ)
2513nnnn0d 8292 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝐷 ∈ ℕ0)
2625nn0ge0d 8295 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 0 ≤ 𝐷)
2724, 26absidd 9994 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → (abs‘𝐷) = 𝐷)
2823, 27breqtrd 3816 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑟 < 𝐷)
29 simpr3 923 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → 𝑁 = ((𝑞 · 𝐷) + 𝑟))
3029ad2antrr 465 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑁 = ((𝑞 · 𝐷) + 𝑟))
31 simpr3 923 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑁 = ((𝑡 · 𝐷) + 𝑠))
3230, 31eqtr3d 2090 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ((𝑞 · 𝐷) + 𝑟) = ((𝑡 · 𝐷) + 𝑠))
3313, 15, 17, 19, 20, 21, 28, 32divalglemnqt 10232 . . . . . . . . . . . . 13 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ¬ 𝑞 < 𝑡)
3433adantr 265 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 < 𝑡) → ¬ 𝑞 < 𝑡)
3511, 34pm2.21dd 560 . . . . . . . . . . 11 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 < 𝑡) → 𝑟 = 𝑠)
3613adantr 265 . . . . . . . . . . . . 13 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝐷 ∈ ℕ)
3736nnzd 8418 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝐷 ∈ ℤ)
3815adantr 265 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑟 ∈ ℤ)
3917adantr 265 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑠 ∈ ℤ)
4019adantr 265 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑞 ∈ ℤ)
4120adantr 265 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑡 ∈ ℤ)
42 simpr 107 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑞 = 𝑡)
4332adantr 265 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → ((𝑞 · 𝐷) + 𝑟) = ((𝑡 · 𝐷) + 𝑠))
4437, 38, 39, 40, 41, 42, 43divalglemqt 10231 . . . . . . . . . . 11 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑟 = 𝑠)
45 simpr 107 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑡 < 𝑞) → 𝑡 < 𝑞)
46 simpr1 921 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → 0 ≤ 𝑟)
4746ad2antrr 465 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 0 ≤ 𝑟)
48 simpr2 922 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑠 < (abs‘𝐷))
4948, 27breqtrd 3816 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑠 < 𝐷)
5031, 30eqtr3d 2090 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ((𝑡 · 𝐷) + 𝑠) = ((𝑞 · 𝐷) + 𝑟))
5113, 17, 15, 20, 19, 47, 49, 50divalglemnqt 10232 . . . . . . . . . . . . 13 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ¬ 𝑡 < 𝑞)
5251adantr 265 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑡 < 𝑞) → ¬ 𝑡 < 𝑞)
5345, 52pm2.21dd 560 . . . . . . . . . . 11 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑡 < 𝑞) → 𝑟 = 𝑠)
54 ztri3or 8345 . . . . . . . . . . . 12 ((𝑞 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑞 < 𝑡𝑞 = 𝑡𝑡 < 𝑞))
5519, 20, 54syl2anc 397 . . . . . . . . . . 11 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → (𝑞 < 𝑡𝑞 = 𝑡𝑡 < 𝑞))
5635, 44, 53, 55mpjao3dan 1213 . . . . . . . . . 10 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑟 = 𝑠)
5756ex 112 . . . . . . . . 9 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) → ((0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠)) → 𝑟 = 𝑠))
5857rexlimdva 2450 . . . . . . . 8 (((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → (∃𝑡 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠)) → 𝑟 = 𝑠))
5910, 58syl5bi 145 . . . . . . 7 (((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → (∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) → 𝑟 = 𝑠))
6059exp31 350 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝑞 ∈ ℤ → ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) → (∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) → 𝑟 = 𝑠))))
612, 5, 60rexlimd 2447 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) → (∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) → 𝑟 = 𝑠)))
6261impd 246 . . . 4 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))) → 𝑟 = 𝑠))
6362ralrimivva 2418 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∀𝑟 ∈ ℤ ∀𝑠 ∈ ℤ ((∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))) → 𝑟 = 𝑠))
64 breq2 3796 . . . . . 6 (𝑟 = 𝑠 → (0 ≤ 𝑟 ↔ 0 ≤ 𝑠))
65 breq1 3795 . . . . . 6 (𝑟 = 𝑠 → (𝑟 < (abs‘𝐷) ↔ 𝑠 < (abs‘𝐷)))
66 oveq2 5548 . . . . . . 7 (𝑟 = 𝑠 → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · 𝐷) + 𝑠))
6766eqeq2d 2067 . . . . . 6 (𝑟 = 𝑠 → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑠)))
6864, 65, 673anbi123d 1218 . . . . 5 (𝑟 = 𝑠 → ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))))
6968rexbidv 2344 . . . 4 (𝑟 = 𝑠 → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))))
7069rmo4 2757 . . 3 (∃*𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∀𝑟 ∈ ℤ ∀𝑠 ∈ ℤ ((∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))) → 𝑟 = 𝑠))
7163, 70sylibr 141 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃*𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
72 reu5 2539 . 2 (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ∧ ∃*𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
731, 71, 72sylanbrc 402 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 101   ∨ w3o 895   ∧ w3a 896   = wceq 1259   ∈ wcel 1409  ∀wral 2323  ∃wrex 2324  ∃!wreu 2325  ∃*wrmo 2326   class class class wbr 3792  ‘cfv 4930  (class class class)co 5540  0cc0 6947   + caddc 6950   · cmul 6952   < clt 7119   ≤ cle 7120  ℕcn 7990  ℤcz 8302  abscabs 9824 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-mulrcl 7041  ax-addcom 7042  ax-mulcom 7043  ax-addass 7044  ax-mulass 7045  ax-distr 7046  ax-i2m1 7047  ax-1rid 7049  ax-0id 7050  ax-rnegex 7051  ax-precex 7052  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-apti 7057  ax-pre-ltadd 7058  ax-pre-mulgt0 7059  ax-pre-mulext 7060  ax-arch 7061 This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-if 3360  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-frec 6009  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-reap 7640  df-ap 7647  df-div 7726  df-inn 7991  df-2 8049  df-n0 8240  df-z 8303  df-uz 8570  df-q 8652  df-rp 8682  df-fl 9222  df-mod 9273  df-iseq 9376  df-iexp 9420  df-cj 9670  df-re 9671  df-im 9672  df-rsqrt 9825  df-abs 9826 This theorem is referenced by:  divalg  10236
 Copyright terms: Public domain W3C validator