ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divclap GIF version

Theorem divclap 7609
Description: Closure law for division. (Contributed by Jim Kingdon, 22-Feb-2020.)
Assertion
Ref Expression
divclap ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) ∈ ℂ)

Proof of Theorem divclap
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 divvalap 7605 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
2 receuap 7602 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
3 riotacl 5445 . . 3 (∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴 → (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) ∈ ℂ)
42, 3syl 14 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) ∈ ℂ)
51, 4eqeltrd 2114 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 885   = wceq 1243  wcel 1393  ∃!wreu 2305   class class class wbr 3761  crio 5430  (class class class)co 5475  cc 6844  0cc0 6846   · cmul 6851   # cap 7524   / cdiv 7603
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3869  ax-sep 3872  ax-nul 3880  ax-pow 3924  ax-pr 3941  ax-un 4142  ax-setind 4232  ax-iinf 4274  ax-cnex 6932  ax-resscn 6933  ax-1cn 6934  ax-1re 6935  ax-icn 6936  ax-addcl 6937  ax-addrcl 6938  ax-mulcl 6939  ax-mulrcl 6940  ax-addcom 6941  ax-mulcom 6942  ax-addass 6943  ax-mulass 6944  ax-distr 6945  ax-i2m1 6946  ax-1rid 6948  ax-0id 6949  ax-rnegex 6950  ax-precex 6951  ax-cnre 6952  ax-pre-ltirr 6953  ax-pre-ltwlin 6954  ax-pre-lttrn 6955  ax-pre-apti 6956  ax-pre-ltadd 6957  ax-pre-mulgt0 6958  ax-pre-mulext 6959
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2308  df-rex 2309  df-reu 2310  df-rmo 2311  df-rab 2312  df-v 2556  df-sbc 2762  df-csb 2850  df-dif 2917  df-un 2919  df-in 2921  df-ss 2928  df-nul 3222  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-uni 3578  df-int 3613  df-iun 3656  df-br 3762  df-opab 3816  df-mpt 3817  df-tr 3852  df-eprel 4023  df-id 4027  df-po 4030  df-iso 4031  df-iord 4075  df-on 4077  df-suc 4080  df-iom 4277  df-xp 4314  df-rel 4315  df-cnv 4316  df-co 4317  df-dm 4318  df-rn 4319  df-res 4320  df-ima 4321  df-iota 4830  df-fun 4867  df-fn 4868  df-f 4869  df-f1 4870  df-fo 4871  df-f1o 4872  df-fv 4873  df-riota 5431  df-ov 5478  df-oprab 5479  df-mpt2 5480  df-1st 5730  df-2nd 5731  df-recs 5883  df-irdg 5920  df-1o 5964  df-2o 5965  df-oadd 5968  df-omul 5969  df-er 6069  df-ec 6071  df-qs 6075  df-ni 6359  df-pli 6360  df-mi 6361  df-lti 6362  df-plpq 6399  df-mpq 6400  df-enq 6402  df-nqqs 6403  df-plqqs 6404  df-mqqs 6405  df-1nqqs 6406  df-rq 6407  df-ltnqqs 6408  df-enq0 6479  df-nq0 6480  df-0nq0 6481  df-plq0 6482  df-mq0 6483  df-inp 6521  df-i1p 6522  df-iplp 6523  df-iltp 6525  df-enr 6768  df-nr 6769  df-ltr 6772  df-0r 6773  df-1r 6774  df-0 6853  df-1 6854  df-r 6856  df-lt 6859  df-pnf 7018  df-mnf 7019  df-xr 7020  df-ltxr 7021  df-le 7022  df-sub 7140  df-neg 7141  df-reap 7518  df-ap 7525  df-div 7604
This theorem is referenced by:  recclap  7610  divcanap2  7611  divcanap1  7612  divap0b  7614  div23ap  7622  div12ap  7625  div11ap  7629  divsubdirap  7636  divmuldivap  7640  divdivdivap  7641  divcanap5  7642  divmuleqap  7645  divcanap6  7647  divdiv32ap  7648  dmdcanap  7650  ddcanap  7654  divsubdivap  7656  div2negap  7663  divclapzi  7675  divclapi  7682  divclapd  7717  nndivtr  7907  halfcl  8100  sqdivap  9172  cjdivap  9363  absdivap  9522
  Copyright terms: Public domain W3C validator