ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divdivap2 GIF version

Theorem divdivap2 8451
Description: Division by a fraction. (Contributed by Jim Kingdon, 26-Feb-2020.)
Assertion
Ref Expression
divdivap2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / 𝐵))

Proof of Theorem divdivap2
StepHypRef Expression
1 ax-1cn 7681 . . . . 5 1 ∈ ℂ
2 1ap0 8319 . . . . 5 1 # 0
31, 2pm3.2i 270 . . . 4 (1 ∈ ℂ ∧ 1 # 0)
4 divdivdivap 8440 . . . 4 (((𝐴 ∈ ℂ ∧ (1 ∈ ℂ ∧ 1 # 0)) ∧ ((𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0))) → ((𝐴 / 1) / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / (1 · 𝐵)))
53, 4mpanl2 431 . . 3 ((𝐴 ∈ ℂ ∧ ((𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0))) → ((𝐴 / 1) / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / (1 · 𝐵)))
653impb 1162 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 1) / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / (1 · 𝐵)))
7 div1 8430 . . . 4 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
873ad2ant1 987 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 / 1) = 𝐴)
98oveq1d 5757 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 1) / (𝐵 / 𝐶)) = (𝐴 / (𝐵 / 𝐶)))
10 mulid2 7732 . . . . 5 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
1110ad2antrl 481 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (1 · 𝐵) = 𝐵)
12113adant3 986 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (1 · 𝐵) = 𝐵)
1312oveq2d 5758 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 · 𝐶) / (1 · 𝐵)) = ((𝐴 · 𝐶) / 𝐵))
146, 9, 133eqtr3d 2158 1 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 947   = wceq 1316  wcel 1465   class class class wbr 3899  (class class class)co 5742  cc 7586  0cc0 7588  1c1 7589   · cmul 7593   # cap 8310   / cdiv 8399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-id 4185  df-po 4188  df-iso 4189  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8304  df-ap 8311  df-div 8400
This theorem is referenced by:  divdivap2d  8550
  Copyright terms: Public domain W3C validator