ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divfl0 GIF version

Theorem divfl0 9430
Description: The floor of a fraction is 0 iff the denominator is less than the numerator. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
divfl0 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (⌊‘(𝐴 / 𝐵)) = 0))

Proof of Theorem divfl0
StepHypRef Expression
1 nn0z 8504 . . . . . 6 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
2 znq 8842 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
31, 2sylan 277 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
4 qcn 8852 . . . . 5 ((𝐴 / 𝐵) ∈ ℚ → (𝐴 / 𝐵) ∈ ℂ)
5 addid2 7366 . . . . . 6 ((𝐴 / 𝐵) ∈ ℂ → (0 + (𝐴 / 𝐵)) = (𝐴 / 𝐵))
65eqcomd 2088 . . . . 5 ((𝐴 / 𝐵) ∈ ℂ → (𝐴 / 𝐵) = (0 + (𝐴 / 𝐵)))
73, 4, 63syl 17 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 / 𝐵) = (0 + (𝐴 / 𝐵)))
87fveq2d 5233 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (⌊‘(𝐴 / 𝐵)) = (⌊‘(0 + (𝐴 / 𝐵))))
98eqeq1d 2091 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((⌊‘(𝐴 / 𝐵)) = 0 ↔ (⌊‘(0 + (𝐴 / 𝐵))) = 0))
10 0z 8495 . . 3 0 ∈ ℤ
11 flqbi2 9425 . . 3 ((0 ∈ ℤ ∧ (𝐴 / 𝐵) ∈ ℚ) → ((⌊‘(0 + (𝐴 / 𝐵))) = 0 ↔ (0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) < 1)))
1210, 3, 11sylancr 405 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((⌊‘(0 + (𝐴 / 𝐵))) = 0 ↔ (0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) < 1)))
13 nn0ge0div 8567 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 0 ≤ (𝐴 / 𝐵))
1413biantrurd 299 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 / 𝐵) < 1 ↔ (0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) < 1)))
15 nn0re 8416 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
16 nnrp 8876 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
17 divlt1lt 8934 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) < 1 ↔ 𝐴 < 𝐵))
1815, 16, 17syl2an 283 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 / 𝐵) < 1 ↔ 𝐴 < 𝐵))
1914, 18bitr3d 188 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) < 1) ↔ 𝐴 < 𝐵))
209, 12, 193bitrrd 213 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (⌊‘(𝐴 / 𝐵)) = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434   class class class wbr 3805  cfv 4952  (class class class)co 5563  cc 7093  cr 7094  0cc0 7095  1c1 7096   + caddc 7098   < clt 7267  cle 7268   / cdiv 7879  cn 8158  0cn0 8407  cz 8484  cq 8837  +crp 8867  cfl 9402
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208  ax-arch 7209
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-po 4079  df-iso 4080  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-n0 8408  df-z 8485  df-q 8838  df-rp 8868  df-fl 9404
This theorem is referenced by:  fldiv4p1lem1div2  9439
  Copyright terms: Public domain W3C validator