ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divmulap GIF version

Theorem divmulap 7592
Description: Relationship between division and multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
Assertion
Ref Expression
divmulap ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴))

Proof of Theorem divmulap
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 divvalap 7591 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → (𝐴 / 𝐶) = (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴))
213expb 1105 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 / 𝐶) = (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴))
323adant2 923 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 / 𝐶) = (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴))
43eqeq1d 2048 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴) = 𝐵))
5 simp2 905 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → 𝐵 ∈ ℂ)
6 receuap 7588 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → ∃!𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴)
763expb 1105 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ∃!𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴)
873adant2 923 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ∃!𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴)
9 oveq2 5481 . . . . 5 (𝑥 = 𝐵 → (𝐶 · 𝑥) = (𝐶 · 𝐵))
109eqeq1d 2048 . . . 4 (𝑥 = 𝐵 → ((𝐶 · 𝑥) = 𝐴 ↔ (𝐶 · 𝐵) = 𝐴))
1110riota2 5451 . . 3 ((𝐵 ∈ ℂ ∧ ∃!𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴) → ((𝐶 · 𝐵) = 𝐴 ↔ (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴) = 𝐵))
125, 8, 11syl2anc 391 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐶 · 𝐵) = 𝐴 ↔ (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴) = 𝐵))
134, 12bitr4d 180 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wcel 1393  ∃!wreu 2305   class class class wbr 3760  crio 5428  (class class class)co 5473  cc 6830  0cc0 6832   · cmul 6837   # cap 7510   / cdiv 7589
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3868  ax-sep 3871  ax-nul 3879  ax-pow 3923  ax-pr 3940  ax-un 4141  ax-setind 4230  ax-iinf 4272  ax-cnex 6918  ax-resscn 6919  ax-1cn 6920  ax-1re 6921  ax-icn 6922  ax-addcl 6923  ax-addrcl 6924  ax-mulcl 6925  ax-mulrcl 6926  ax-addcom 6927  ax-mulcom 6928  ax-addass 6929  ax-mulass 6930  ax-distr 6931  ax-i2m1 6932  ax-1rid 6934  ax-0id 6935  ax-rnegex 6936  ax-precex 6937  ax-cnre 6938  ax-pre-ltirr 6939  ax-pre-ltwlin 6940  ax-pre-lttrn 6941  ax-pre-apti 6942  ax-pre-ltadd 6943  ax-pre-mulgt0 6944  ax-pre-mulext 6945
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2308  df-rex 2309  df-reu 2310  df-rmo 2311  df-rab 2312  df-v 2556  df-sbc 2762  df-csb 2850  df-dif 2917  df-un 2919  df-in 2921  df-ss 2928  df-nul 3222  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-uni 3577  df-int 3612  df-iun 3655  df-br 3761  df-opab 3815  df-mpt 3816  df-tr 3851  df-eprel 4022  df-id 4026  df-po 4029  df-iso 4030  df-iord 4074  df-on 4076  df-suc 4079  df-iom 4275  df-xp 4312  df-rel 4313  df-cnv 4314  df-co 4315  df-dm 4316  df-rn 4317  df-res 4318  df-ima 4319  df-iota 4828  df-fun 4865  df-fn 4866  df-f 4867  df-f1 4868  df-fo 4869  df-f1o 4870  df-fv 4871  df-riota 5429  df-ov 5476  df-oprab 5477  df-mpt2 5478  df-1st 5728  df-2nd 5729  df-recs 5881  df-irdg 5918  df-1o 5962  df-2o 5963  df-oadd 5966  df-omul 5967  df-er 6065  df-ec 6067  df-qs 6071  df-ni 6345  df-pli 6346  df-mi 6347  df-lti 6348  df-plpq 6385  df-mpq 6386  df-enq 6388  df-nqqs 6389  df-plqqs 6390  df-mqqs 6391  df-1nqqs 6392  df-rq 6393  df-ltnqqs 6394  df-enq0 6465  df-nq0 6466  df-0nq0 6467  df-plq0 6468  df-mq0 6469  df-inp 6507  df-i1p 6508  df-iplp 6509  df-iltp 6511  df-enr 6754  df-nr 6755  df-ltr 6758  df-0r 6759  df-1r 6760  df-0 6839  df-1 6840  df-r 6842  df-lt 6845  df-pnf 7004  df-mnf 7005  df-xr 7006  df-ltxr 7007  df-le 7008  df-sub 7126  df-neg 7127  df-reap 7504  df-ap 7511  df-div 7590
This theorem is referenced by:  divmulap2  7593  divcanap2  7597  divrecap  7605  divcanap3  7613  div0ap  7617  div1  7618  recrecap  7623  rec11ap  7624  divdivdivap  7627  ddcanap  7640  rerecclap  7644  div2negap  7649  divmulapzi  7677  divmulapd  7725  caucvgrelemrec  9418
  Copyright terms: Public domain W3C validator