ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djudisj GIF version

Theorem djudisj 4774
Description: Disjoint unions with disjoint index sets are disjoint. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Assertion
Ref Expression
djudisj ((𝐴𝐵) = ∅ → ( 𝑥𝐴 ({𝑥} × 𝐶) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem djudisj
StepHypRef Expression
1 djussxp 4503 . 2 𝑥𝐴 ({𝑥} × 𝐶) ⊆ (𝐴 × V)
2 incom 3159 . . 3 ((𝐴 × V) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ( 𝑦𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V))
3 djussxp 4503 . . . 4 𝑦𝐵 ({𝑦} × 𝐷) ⊆ (𝐵 × V)
4 incom 3159 . . . . 5 ((𝐵 × V) ∩ (𝐴 × V)) = ((𝐴 × V) ∩ (𝐵 × V))
5 xpdisj1 4771 . . . . 5 ((𝐴𝐵) = ∅ → ((𝐴 × V) ∩ (𝐵 × V)) = ∅)
64, 5syl5eq 2126 . . . 4 ((𝐴𝐵) = ∅ → ((𝐵 × V) ∩ (𝐴 × V)) = ∅)
7 ssdisj 3301 . . . 4 (( 𝑦𝐵 ({𝑦} × 𝐷) ⊆ (𝐵 × V) ∧ ((𝐵 × V) ∩ (𝐴 × V)) = ∅) → ( 𝑦𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V)) = ∅)
83, 6, 7sylancr 405 . . 3 ((𝐴𝐵) = ∅ → ( 𝑦𝐵 ({𝑦} × 𝐷) ∩ (𝐴 × V)) = ∅)
92, 8syl5eq 2126 . 2 ((𝐴𝐵) = ∅ → ((𝐴 × V) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅)
10 ssdisj 3301 . 2 (( 𝑥𝐴 ({𝑥} × 𝐶) ⊆ (𝐴 × V) ∧ ((𝐴 × V) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅) → ( 𝑥𝐴 ({𝑥} × 𝐶) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅)
111, 9, 10sylancr 405 1 ((𝐴𝐵) = ∅ → ( 𝑥𝐴 ({𝑥} × 𝐶) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1285  Vcvv 2602  cin 2973  wss 2974  c0 3252  {csn 3400   ciun 3680   × cxp 4363
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3253  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-iun 3682  df-opab 3842  df-xp 4371  df-rel 4372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator