![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmi | GIF version |
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dmi | ⊢ dom I = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqv 3283 | . 2 ⊢ (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I ) | |
2 | a9ev 1628 | . . . 4 ⊢ ∃𝑦 𝑦 = 𝑥 | |
3 | vex 2613 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 3 | ideq 4536 | . . . . . 6 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
5 | equcom 1635 | . . . . . 6 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
6 | 4, 5 | bitri 182 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ 𝑦 = 𝑥) |
7 | 6 | exbii 1537 | . . . 4 ⊢ (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥) |
8 | 2, 7 | mpbir 144 | . . 3 ⊢ ∃𝑦 𝑥 I 𝑦 |
9 | vex 2613 | . . . 4 ⊢ 𝑥 ∈ V | |
10 | 9 | eldm 4580 | . . 3 ⊢ (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦) |
11 | 8, 10 | mpbir 144 | . 2 ⊢ 𝑥 ∈ dom I |
12 | 1, 11 | mpgbir 1383 | 1 ⊢ dom I = V |
Colors of variables: wff set class |
Syntax hints: = wceq 1285 ∃wex 1422 ∈ wcel 1434 Vcvv 2610 class class class wbr 3805 I cid 4071 dom cdm 4391 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2612 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-br 3806 df-opab 3860 df-id 4076 df-xp 4397 df-rel 4398 df-dm 4401 |
This theorem is referenced by: dmv 4599 iprc 4648 dmresi 4711 climshft2 10346 |
Copyright terms: Public domain | W3C validator |