Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmpt2ssx GIF version

Theorem dmmpt2ssx 5856
 Description: The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypothesis
Ref Expression
fmpt2x.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
dmmpt2ssx dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem dmmpt2ssx
Dummy variables 𝑢 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2220 . . . . 5 𝑢𝐵
2 nfcsb1v 2939 . . . . 5 𝑥𝑢 / 𝑥𝐵
3 nfcv 2220 . . . . 5 𝑢𝐶
4 nfcv 2220 . . . . 5 𝑣𝐶
5 nfcsb1v 2939 . . . . 5 𝑥𝑢 / 𝑥𝑣 / 𝑦𝐶
6 nfcv 2220 . . . . . 6 𝑦𝑢
7 nfcsb1v 2939 . . . . . 6 𝑦𝑣 / 𝑦𝐶
86, 7nfcsb 2941 . . . . 5 𝑦𝑢 / 𝑥𝑣 / 𝑦𝐶
9 csbeq1a 2917 . . . . 5 (𝑥 = 𝑢𝐵 = 𝑢 / 𝑥𝐵)
10 csbeq1a 2917 . . . . . 6 (𝑦 = 𝑣𝐶 = 𝑣 / 𝑦𝐶)
11 csbeq1a 2917 . . . . . 6 (𝑥 = 𝑢𝑣 / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
1210, 11sylan9eqr 2136 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
131, 2, 3, 4, 5, 8, 9, 12cbvmpt2x 5613 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑢𝐴, 𝑣𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶)
14 fmpt2x.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
15 vex 2605 . . . . . . . 8 𝑢 ∈ V
16 vex 2605 . . . . . . . 8 𝑣 ∈ V
1715, 16op1std 5806 . . . . . . 7 (𝑡 = ⟨𝑢, 𝑣⟩ → (1st𝑡) = 𝑢)
1817csbeq1d 2915 . . . . . 6 (𝑡 = ⟨𝑢, 𝑣⟩ → (1st𝑡) / 𝑥(2nd𝑡) / 𝑦𝐶 = 𝑢 / 𝑥(2nd𝑡) / 𝑦𝐶)
1915, 16op2ndd 5807 . . . . . . . 8 (𝑡 = ⟨𝑢, 𝑣⟩ → (2nd𝑡) = 𝑣)
2019csbeq1d 2915 . . . . . . 7 (𝑡 = ⟨𝑢, 𝑣⟩ → (2nd𝑡) / 𝑦𝐶 = 𝑣 / 𝑦𝐶)
2120csbeq2dv 2932 . . . . . 6 (𝑡 = ⟨𝑢, 𝑣⟩ → 𝑢 / 𝑥(2nd𝑡) / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
2218, 21eqtrd 2114 . . . . 5 (𝑡 = ⟨𝑢, 𝑣⟩ → (1st𝑡) / 𝑥(2nd𝑡) / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
2322mpt2mptx 5626 . . . 4 (𝑡 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵) ↦ (1st𝑡) / 𝑥(2nd𝑡) / 𝑦𝐶) = (𝑢𝐴, 𝑣𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶)
2413, 14, 233eqtr4i 2112 . . 3 𝐹 = (𝑡 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵) ↦ (1st𝑡) / 𝑥(2nd𝑡) / 𝑦𝐶)
2524dmmptss 4847 . 2 dom 𝐹 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵)
26 nfcv 2220 . . 3 𝑢({𝑥} × 𝐵)
27 nfcv 2220 . . . 4 𝑥{𝑢}
2827, 2nfxp 4397 . . 3 𝑥({𝑢} × 𝑢 / 𝑥𝐵)
29 sneq 3417 . . . 4 (𝑥 = 𝑢 → {𝑥} = {𝑢})
3029, 9xpeq12d 4396 . . 3 (𝑥 = 𝑢 → ({𝑥} × 𝐵) = ({𝑢} × 𝑢 / 𝑥𝐵))
3126, 28, 30cbviun 3723 . 2 𝑥𝐴 ({𝑥} × 𝐵) = 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵)
3225, 31sseqtr4i 3033 1 dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵)
 Colors of variables: wff set class Syntax hints:   = wceq 1285  ⦋csb 2909   ⊆ wss 2974  {csn 3406  ⟨cop 3409  ∪ ciun 3686   ↦ cmpt 3847   × cxp 4369  dom cdm 4371  ‘cfv 4932   ↦ cmpt2 5545  1st c1st 5796  2nd c2nd 5797 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fv 4940  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799 This theorem is referenced by:  mpt2exxg  5864  mpt2xopn0yelv  5888
 Copyright terms: Public domain W3C validator