ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmptg GIF version

Theorem dmmptg 4845
Description: The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.)
Assertion
Ref Expression
dmmptg (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem dmmptg
StepHypRef Expression
1 elex 2583 . . . 4 (𝐵𝑉𝐵 ∈ V)
21ralimi 2401 . . 3 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 𝐵 ∈ V)
3 rabid2 2503 . . 3 (𝐴 = {𝑥𝐴𝐵 ∈ V} ↔ ∀𝑥𝐴 𝐵 ∈ V)
42, 3sylibr 141 . 2 (∀𝑥𝐴 𝐵𝑉𝐴 = {𝑥𝐴𝐵 ∈ V})
5 eqid 2056 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
65dmmpt 4843 . 2 dom (𝑥𝐴𝐵) = {𝑥𝐴𝐵 ∈ V}
74, 6syl6reqr 2107 1 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1259  wcel 1409  wral 2323  {crab 2327  Vcvv 2574  cmpt 3845  dom cdm 4372
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-br 3792  df-opab 3846  df-mpt 3847  df-xp 4378  df-rel 4379  df-cnv 4380  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385
This theorem is referenced by:  resfunexg  5409  rdgtfr  5991  rdgruledefgg  5992
  Copyright terms: Public domain W3C validator