ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmuni GIF version

Theorem dmuni 4572
Description: The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.)
Assertion
Ref Expression
dmuni dom 𝐴 = 𝑥𝐴 dom 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem dmuni
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 excom 1570 . . . . 5 (∃𝑧𝑥(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴) ↔ ∃𝑥𝑧(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴))
2 ancom 257 . . . . . . 7 ((∃𝑧𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴) ↔ (𝑥𝐴 ∧ ∃𝑧𝑦, 𝑧⟩ ∈ 𝑥))
3 19.41v 1798 . . . . . . 7 (∃𝑧(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴) ↔ (∃𝑧𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴))
4 vex 2577 . . . . . . . . 9 𝑦 ∈ V
54eldm2 4560 . . . . . . . 8 (𝑦 ∈ dom 𝑥 ↔ ∃𝑧𝑦, 𝑧⟩ ∈ 𝑥)
65anbi2i 438 . . . . . . 7 ((𝑥𝐴𝑦 ∈ dom 𝑥) ↔ (𝑥𝐴 ∧ ∃𝑧𝑦, 𝑧⟩ ∈ 𝑥))
72, 3, 63bitr4i 205 . . . . . 6 (∃𝑧(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴) ↔ (𝑥𝐴𝑦 ∈ dom 𝑥))
87exbii 1512 . . . . 5 (∃𝑥𝑧(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴) ↔ ∃𝑥(𝑥𝐴𝑦 ∈ dom 𝑥))
91, 8bitri 177 . . . 4 (∃𝑧𝑥(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴) ↔ ∃𝑥(𝑥𝐴𝑦 ∈ dom 𝑥))
10 eluni 3610 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ 𝐴 ↔ ∃𝑥(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴))
1110exbii 1512 . . . 4 (∃𝑧𝑦, 𝑧⟩ ∈ 𝐴 ↔ ∃𝑧𝑥(⟨𝑦, 𝑧⟩ ∈ 𝑥𝑥𝐴))
12 df-rex 2329 . . . 4 (∃𝑥𝐴 𝑦 ∈ dom 𝑥 ↔ ∃𝑥(𝑥𝐴𝑦 ∈ dom 𝑥))
139, 11, 123bitr4i 205 . . 3 (∃𝑧𝑦, 𝑧⟩ ∈ 𝐴 ↔ ∃𝑥𝐴 𝑦 ∈ dom 𝑥)
144eldm2 4560 . . 3 (𝑦 ∈ dom 𝐴 ↔ ∃𝑧𝑦, 𝑧⟩ ∈ 𝐴)
15 eliun 3688 . . 3 (𝑦 𝑥𝐴 dom 𝑥 ↔ ∃𝑥𝐴 𝑦 ∈ dom 𝑥)
1613, 14, 153bitr4i 205 . 2 (𝑦 ∈ dom 𝐴𝑦 𝑥𝐴 dom 𝑥)
1716eqriv 2053 1 dom 𝐴 = 𝑥𝐴 dom 𝑥
Colors of variables: wff set class
Syntax hints:  wa 101   = wceq 1259  wex 1397  wcel 1409  wrex 2324  cop 3405   cuni 3607   ciun 3684  dom cdm 4372
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2949  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-iun 3686  df-br 3792  df-dm 4382
This theorem is referenced by:  tfrlem8  5964  tfrlemi14d  5977
  Copyright terms: Public domain W3C validator