ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpm GIF version

Theorem dmxpm 4754
Description: The domain of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmxpm (∃𝑥 𝑥𝐵 → dom (𝐴 × 𝐵) = 𝐴)
Distinct variable group:   𝑥,𝐵
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem dmxpm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2200 . . 3 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
21cbvexv 1890 . 2 (∃𝑥 𝑥𝐵 ↔ ∃𝑧 𝑧𝐵)
3 df-xp 4540 . . . 4 (𝐴 × 𝐵) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
43dmeqi 4735 . . 3 dom (𝐴 × 𝐵) = dom {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
5 id 19 . . . . 5 (∃𝑧 𝑧𝐵 → ∃𝑧 𝑧𝐵)
65ralrimivw 2504 . . . 4 (∃𝑧 𝑧𝐵 → ∀𝑦𝐴𝑧 𝑧𝐵)
7 dmopab3 4747 . . . 4 (∀𝑦𝐴𝑧 𝑧𝐵 ↔ dom {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)} = 𝐴)
86, 7sylib 121 . . 3 (∃𝑧 𝑧𝐵 → dom {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)} = 𝐴)
94, 8syl5eq 2182 . 2 (∃𝑧 𝑧𝐵 → dom (𝐴 × 𝐵) = 𝐴)
102, 9sylbi 120 1 (∃𝑥 𝑥𝐵 → dom (𝐴 × 𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wex 1468  wcel 1480  wral 2414  {copab 3983   × cxp 4532  dom cdm 4534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-xp 4540  df-dm 4544
This theorem is referenced by:  rnxpm  4963  ssxpbm  4969  ssxp1  4970  xpexr2m  4975  relrelss  5060  unixpm  5069  exmidfodomrlemim  7050
  Copyright terms: Public domain W3C validator