![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmxpss | GIF version |
Description: The domain of a cross product is a subclass of the first factor. (Contributed by NM, 19-Mar-2007.) |
Ref | Expression |
---|---|
dmxpss | ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2613 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1 | eldm2 4582 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 × 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) |
3 | opelxp1 4424 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 𝑥 ∈ 𝐴) | |
4 | 3 | exlimiv 1530 | . . 3 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 𝑥 ∈ 𝐴) |
5 | 2, 4 | sylbi 119 | . 2 ⊢ (𝑥 ∈ dom (𝐴 × 𝐵) → 𝑥 ∈ 𝐴) |
6 | 5 | ssriv 3013 | 1 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∃wex 1422 ∈ wcel 1434 ⊆ wss 2983 〈cop 3420 × cxp 4390 dom cdm 4392 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3917 ax-pow 3969 ax-pr 3993 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2612 df-un 2987 df-in 2989 df-ss 2996 df-pw 3403 df-sn 3423 df-pr 3424 df-op 3426 df-br 3807 df-opab 3861 df-xp 4398 df-dm 4402 |
This theorem is referenced by: rnxpss 4805 ssxpbm 4807 ssxp1 4808 funssxp 5112 tfrlemibfn 5998 tfr1onlembfn 6014 tfrcllembfn 6027 frecuzrdgtcl 9530 frecuzrdgdomlem 9535 |
Copyright terms: Public domain | W3C validator |