ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dom3 GIF version

Theorem dom3 6670
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their distinct variable conditions. (Contributed by Mario Carneiro, 20-May-2013.)
Hypotheses
Ref Expression
dom2.1 (𝑥𝐴𝐶𝐵)
dom2.2 ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦))
Assertion
Ref Expression
dom3 ((𝐴𝑉𝐵𝑊) → 𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem dom3
StepHypRef Expression
1 dom2.1 . . 3 (𝑥𝐴𝐶𝐵)
21a1i 9 . 2 ((𝐴𝑉𝐵𝑊) → (𝑥𝐴𝐶𝐵))
3 dom2.2 . . 3 ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦))
43a1i 9 . 2 ((𝐴𝑉𝐵𝑊) → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
5 simpl 108 . 2 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
6 simpr 109 . 2 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
72, 4, 5, 6dom3d 6668 1 ((𝐴𝑉𝐵𝑊) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480   class class class wbr 3929  cdom 6633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fv 5131  df-dom 6636
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator