ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domen GIF version

Theorem domen 6260
Description: Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146. (Contributed by NM, 15-Jun-1998.)
Hypothesis
Ref Expression
bren.1 𝐵 ∈ V
Assertion
Ref Expression
domen (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem domen
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren.1 . . 3 𝐵 ∈ V
21brdom 6259 . 2 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
3 vex 2575 . . . . . 6 𝑓 ∈ V
43f11o 5184 . . . . 5 (𝑓:𝐴1-1𝐵 ↔ ∃𝑥(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
54exbii 1510 . . . 4 (∃𝑓 𝑓:𝐴1-1𝐵 ↔ ∃𝑓𝑥(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
6 excom 1568 . . . 4 (∃𝑓𝑥(𝑓:𝐴1-1-onto𝑥𝑥𝐵) ↔ ∃𝑥𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
75, 6bitri 177 . . 3 (∃𝑓 𝑓:𝐴1-1𝐵 ↔ ∃𝑥𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
8 bren 6256 . . . . . 6 (𝐴𝑥 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝑥)
98anbi1i 439 . . . . 5 ((𝐴𝑥𝑥𝐵) ↔ (∃𝑓 𝑓:𝐴1-1-onto𝑥𝑥𝐵))
10 19.41v 1796 . . . . 5 (∃𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵) ↔ (∃𝑓 𝑓:𝐴1-1-onto𝑥𝑥𝐵))
119, 10bitr4i 180 . . . 4 ((𝐴𝑥𝑥𝐵) ↔ ∃𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
1211exbii 1510 . . 3 (∃𝑥(𝐴𝑥𝑥𝐵) ↔ ∃𝑥𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
137, 12bitr4i 180 . 2 (∃𝑓 𝑓:𝐴1-1𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
142, 13bitri 177 1 (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102  wex 1395  wcel 1407  Vcvv 2572  wss 2942   class class class wbr 3789  1-1wf1 4924  1-1-ontowf1o 4926  cen 6247  cdom 6248
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-13 1418  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-sep 3900  ax-pow 3952  ax-pr 3969  ax-un 4195
This theorem depends on definitions:  df-bi 114  df-3an 896  df-tru 1260  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ral 2326  df-rex 2327  df-v 2574  df-un 2947  df-in 2949  df-ss 2956  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-br 3790  df-opab 3844  df-xp 4376  df-rel 4377  df-cnv 4378  df-dm 4380  df-rn 4381  df-fn 4930  df-f 4931  df-f1 4932  df-fo 4933  df-f1o 4934  df-en 6250  df-dom 6251
This theorem is referenced by:  domeng  6261  php5dom  6353
  Copyright terms: Public domain W3C validator