Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsbnd GIF version

Theorem dvdsbnd 10555
 Description: There is an upper bound to the divisors of a nonzero integer. (Contributed by Jim Kingdon, 11-Dec-2021.)
Assertion
Ref Expression
dvdsbnd ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ𝑛) ¬ 𝑚𝐴)
Distinct variable group:   𝐴,𝑚,𝑛

Proof of Theorem dvdsbnd
StepHypRef Expression
1 simpl 107 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℤ)
21zcnd 8603 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
32abscld 10268 . . 3 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
4 arch 8404 . . 3 ((abs‘𝐴) ∈ ℝ → ∃𝑛 ∈ ℕ (abs‘𝐴) < 𝑛)
53, 4syl 14 . 2 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ (abs‘𝐴) < 𝑛)
63ad3antrrr 476 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘𝐴) ∈ ℝ)
7 simpllr 501 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
87nnred 8171 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑛 ∈ ℝ)
9 eluzelz 8761 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑛) → 𝑚 ∈ ℤ)
109adantl 271 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ ℤ)
1110zred 8602 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ ℝ)
12 simplr 497 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘𝐴) < 𝑛)
13 eluzle 8764 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑛) → 𝑛𝑚)
1413adantl 271 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑛𝑚)
156, 8, 11, 12, 14ltletrd 7646 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘𝐴) < 𝑚)
16 zabscl 10173 . . . . . . . . 9 (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℤ)
1716ad4antr 478 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘𝐴) ∈ ℤ)
18 zltnle 8530 . . . . . . . 8 (((abs‘𝐴) ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((abs‘𝐴) < 𝑚 ↔ ¬ 𝑚 ≤ (abs‘𝐴)))
1917, 10, 18syl2anc 403 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → ((abs‘𝐴) < 𝑚 ↔ ¬ 𝑚 ≤ (abs‘𝐴)))
2015, 19mpbid 145 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → ¬ 𝑚 ≤ (abs‘𝐴))
211ad3antrrr 476 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐴 ∈ ℤ)
22 simplr 497 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) → 𝐴 ≠ 0)
2322ad2antrr 472 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐴 ≠ 0)
24 dvdsleabs 10453 . . . . . . . 8 ((𝑚 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝑚𝐴𝑚 ≤ (abs‘𝐴)))
2524con3d 594 . . . . . . 7 ((𝑚 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (¬ 𝑚 ≤ (abs‘𝐴) → ¬ 𝑚𝐴))
2610, 21, 23, 25syl3anc 1170 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → (¬ 𝑚 ≤ (abs‘𝐴) → ¬ 𝑚𝐴))
2720, 26mpd 13 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → ¬ 𝑚𝐴)
2827ralrimiva 2439 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) → ∀𝑚 ∈ (ℤ𝑛) ¬ 𝑚𝐴)
2928ex 113 . . 3 (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) → ((abs‘𝐴) < 𝑛 → ∀𝑚 ∈ (ℤ𝑛) ¬ 𝑚𝐴))
3029reximdva 2468 . 2 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (∃𝑛 ∈ ℕ (abs‘𝐴) < 𝑛 → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ𝑛) ¬ 𝑚𝐴))
315, 30mpd 13 1 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ𝑛) ¬ 𝑚𝐴)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 102   ↔ wb 103   ∧ w3a 920   ∈ wcel 1434   ≠ wne 2249  ∀wral 2353  ∃wrex 2354   class class class wbr 3805  ‘cfv 4952  ℝcr 7094  0cc0 7095   < clt 7267   ≤ cle 7268  ℕcn 8158  ℤcz 8484  ℤ≥cuz 8752  abscabs 10084   ∥ cdvds 10403 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208  ax-arch 7209  ax-caucvg 7210 This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-frec 6060  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-2 8217  df-3 8218  df-4 8219  df-n0 8408  df-z 8485  df-uz 8753  df-q 8838  df-rp 8868  df-iseq 9574  df-iexp 9625  df-cj 9930  df-re 9931  df-im 9932  df-rsqrt 10085  df-abs 10086  df-dvds 10404 This theorem is referenced by:  gcdsupex  10556  gcdsupcl  10557
 Copyright terms: Public domain W3C validator