ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsmultr1d GIF version

Theorem dvdsmultr1d 10146
Description: Natural deduction form of dvdsmultr1 10145. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
dvdsmultr1d.1 (𝜑𝐾 ∈ ℤ)
dvdsmultr1d.2 (𝜑𝑀 ∈ ℤ)
dvdsmultr1d.3 (𝜑𝑁 ∈ ℤ)
dvdsmultr1d.4 (𝜑𝐾𝑀)
Assertion
Ref Expression
dvdsmultr1d (𝜑𝐾 ∥ (𝑀 · 𝑁))

Proof of Theorem dvdsmultr1d
StepHypRef Expression
1 dvdsmultr1d.4 . 2 (𝜑𝐾𝑀)
2 dvdsmultr1d.1 . . 3 (𝜑𝐾 ∈ ℤ)
3 dvdsmultr1d.2 . . 3 (𝜑𝑀 ∈ ℤ)
4 dvdsmultr1d.3 . . 3 (𝜑𝑁 ∈ ℤ)
5 dvdsmultr1 10145 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑀𝐾 ∥ (𝑀 · 𝑁)))
62, 3, 4, 5syl3anc 1146 . 2 (𝜑 → (𝐾𝑀𝐾 ∥ (𝑀 · 𝑁)))
71, 6mpd 13 1 (𝜑𝐾 ∥ (𝑀 · 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1409   class class class wbr 3792  (class class class)co 5540   · cmul 6952  cz 8302  cdvds 10108
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-setind 4290  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-mulrcl 7041  ax-addcom 7042  ax-mulcom 7043  ax-addass 7044  ax-mulass 7045  ax-distr 7046  ax-i2m1 7047  ax-1rid 7049  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053
This theorem depends on definitions:  df-bi 114  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-iota 4895  df-fun 4932  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-sub 7247  df-neg 7248  df-inn 7991  df-n0 8240  df-z 8303  df-dvds 10109
This theorem is referenced by:  dvdsmod  10174
  Copyright terms: Public domain W3C validator