Proof of Theorem dveeq2or
Step | Hyp | Ref
| Expression |
1 | | ax-i12 1395 |
. . . . . 6
⊢ (∀x x = z ∨ (∀x x = y ∨ ∀x(z = y →
∀x
z = y))) |
2 | | orass 683 |
. . . . . 6
⊢ (((∀x x = z ∨ ∀x x = y) ∨ ∀x(z = y →
∀x
z = y))
↔ (∀x x = z ∨ (∀x x = y ∨ ∀x(z = y → ∀x z = y)))) |
3 | 1, 2 | mpbir 134 |
. . . . 5
⊢ ((∀x x = z ∨ ∀x x = y) ∨ ∀x(z = y →
∀x
z = y)) |
4 | | pm1.4 645 |
. . . . . 6
⊢ ((∀x x = z ∨ ∀x x = y) → (∀x x = y ∨ ∀x x = z)) |
5 | 4 | orim1i 676 |
. . . . 5
⊢ (((∀x x = z ∨ ∀x x = y) ∨ ∀x(z = y →
∀x
z = y))
→ ((∀x x = y ∨ ∀x x = z) ∨ ∀x(z = y → ∀x z = y))) |
6 | 3, 5 | ax-mp 7 |
. . . 4
⊢ ((∀x x = y ∨ ∀x x = z) ∨ ∀x(z = y →
∀x
z = y)) |
7 | | orass 683 |
. . . 4
⊢ (((∀x x = y ∨ ∀x x = z) ∨ ∀x(z = y →
∀x
z = y))
↔ (∀x x = y ∨ (∀x x = z ∨ ∀x(z = y → ∀x z = y)))) |
8 | 6, 7 | mpbi 133 |
. . 3
⊢ (∀x x = y ∨ (∀x x = z ∨ ∀x(z = y →
∀x
z = y))) |
9 | | ax16 1691 |
. . . . . 6
⊢ (∀x x = z →
(z = y
→ ∀x z = y)) |
10 | 9 | a5i 1432 |
. . . . 5
⊢ (∀x x = z →
∀x(z = y → ∀x z = y)) |
11 | | id 19 |
. . . . 5
⊢ (∀x(z = y →
∀x
z = y)
→ ∀x(z = y → ∀x z = y)) |
12 | 10, 11 | jaoi 635 |
. . . 4
⊢ ((∀x x = z ∨ ∀x(z = y → ∀x z = y)) →
∀x(z = y → ∀x z = y)) |
13 | 12 | orim2i 677 |
. . 3
⊢ ((∀x x = y ∨ (∀x x = z ∨ ∀x(z = y →
∀x
z = y))) → (∀x x = y ∨ ∀x(z = y → ∀x z = y))) |
14 | 8, 13 | ax-mp 7 |
. 2
⊢ (∀x x = y ∨ ∀x(z = y → ∀x z = y)) |
15 | | df-nf 1347 |
. . . 4
⊢
(Ⅎx z = y ↔
∀x(z = y → ∀x z = y)) |
16 | 15 | biimpri 124 |
. . 3
⊢ (∀x(z = y →
∀x
z = y)
→ Ⅎx z = y) |
17 | 16 | orim2i 677 |
. 2
⊢ ((∀x x = y ∨ ∀x(z = y → ∀x z = y)) →
(∀x
x = y
∨ Ⅎx
z = y)) |
18 | 14, 17 | ax-mp 7 |
1
⊢ (∀x x = y ∨ Ⅎx
z = y) |