ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecid GIF version

Theorem ecid 6200
Description: A set is equal to its converse epsilon coset. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
ecid.1 𝐴 ∈ V
Assertion
Ref Expression
ecid [𝐴] E = 𝐴

Proof of Theorem ecid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 2577 . . . 4 𝑦 ∈ V
2 ecid.1 . . . 4 𝐴 ∈ V
31, 2elec 6176 . . 3 (𝑦 ∈ [𝐴] E ↔ 𝐴 E 𝑦)
42, 1brcnv 4546 . . 3 (𝐴 E 𝑦𝑦 E 𝐴)
52epelc 4056 . . 3 (𝑦 E 𝐴𝑦𝐴)
63, 4, 53bitri 199 . 2 (𝑦 ∈ [𝐴] E ↔ 𝑦𝐴)
76eqriv 2053 1 [𝐴] E = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1259  wcel 1409  Vcvv 2574   class class class wbr 3792   E cep 4052  ccnv 4372  [cec 6135
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-eprel 4054  df-xp 4379  df-cnv 4381  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-ec 6139
This theorem is referenced by:  qsid  6202
  Copyright terms: Public domain W3C validator