![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ecidsn | GIF version |
Description: An equivalence class modulo the identity relation is a singleton. (Contributed by NM, 24-Oct-2004.) |
Ref | Expression |
---|---|
ecidsn | ⊢ [𝐴] I = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ec 6174 | . 2 ⊢ [𝐴] I = ( I “ {𝐴}) | |
2 | imai 4711 | . 2 ⊢ ( I “ {𝐴}) = {𝐴} | |
3 | 1, 2 | eqtri 2102 | 1 ⊢ [𝐴] I = {𝐴} |
Colors of variables: wff set class |
Syntax hints: = wceq 1285 {csn 3406 I cid 4051 “ cima 4374 [cec 6170 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-pr 3972 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-br 3794 df-opab 3848 df-id 4056 df-xp 4377 df-rel 4378 df-cnv 4379 df-dm 4381 df-rn 4382 df-res 4383 df-ima 4384 df-ec 6174 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |