ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecinxp GIF version

Theorem ecinxp 6212
Description: Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015.)
Assertion
Ref Expression
ecinxp (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → [𝐵]𝑅 = [𝐵](𝑅 ∩ (𝐴 × 𝐴)))

Proof of Theorem ecinxp
StepHypRef Expression
1 simpr 107 . . . . . . . 8 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → 𝐵𝐴)
21snssd 3537 . . . . . . 7 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → {𝐵} ⊆ 𝐴)
3 df-ss 2959 . . . . . . 7 ({𝐵} ⊆ 𝐴 ↔ ({𝐵} ∩ 𝐴) = {𝐵})
42, 3sylib 131 . . . . . 6 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → ({𝐵} ∩ 𝐴) = {𝐵})
54imaeq2d 4696 . . . . 5 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ ({𝐵} ∩ 𝐴)) = (𝑅 “ {𝐵}))
65ineq1d 3165 . . . 4 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → ((𝑅 “ ({𝐵} ∩ 𝐴)) ∩ 𝐴) = ((𝑅 “ {𝐵}) ∩ 𝐴))
7 imass2 4729 . . . . . . 7 ({𝐵} ⊆ 𝐴 → (𝑅 “ {𝐵}) ⊆ (𝑅𝐴))
82, 7syl 14 . . . . . 6 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ {𝐵}) ⊆ (𝑅𝐴))
9 simpl 106 . . . . . 6 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅𝐴) ⊆ 𝐴)
108, 9sstrd 2983 . . . . 5 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ {𝐵}) ⊆ 𝐴)
11 df-ss 2959 . . . . 5 ((𝑅 “ {𝐵}) ⊆ 𝐴 ↔ ((𝑅 “ {𝐵}) ∩ 𝐴) = (𝑅 “ {𝐵}))
1210, 11sylib 131 . . . 4 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → ((𝑅 “ {𝐵}) ∩ 𝐴) = (𝑅 “ {𝐵}))
136, 12eqtr2d 2089 . . 3 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ {𝐵}) = ((𝑅 “ ({𝐵} ∩ 𝐴)) ∩ 𝐴))
14 imainrect 4794 . . 3 ((𝑅 ∩ (𝐴 × 𝐴)) “ {𝐵}) = ((𝑅 “ ({𝐵} ∩ 𝐴)) ∩ 𝐴)
1513, 14syl6eqr 2106 . 2 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ {𝐵}) = ((𝑅 ∩ (𝐴 × 𝐴)) “ {𝐵}))
16 df-ec 6139 . 2 [𝐵]𝑅 = (𝑅 “ {𝐵})
17 df-ec 6139 . 2 [𝐵](𝑅 ∩ (𝐴 × 𝐴)) = ((𝑅 ∩ (𝐴 × 𝐴)) “ {𝐵})
1815, 16, 173eqtr4g 2113 1 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → [𝐵]𝑅 = [𝐵](𝑅 ∩ (𝐴 × 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  cin 2944  wss 2945  {csn 3403   × cxp 4371  cima 4376  [cec 6135
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-xp 4379  df-rel 4380  df-cnv 4381  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-ec 6139
This theorem is referenced by:  qsinxp  6213  nqnq0pi  6594
  Copyright terms: Public domain W3C validator