ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecoptocl GIF version

Theorem ecoptocl 6223
Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.)
Hypotheses
Ref Expression
ecoptocl.1 𝑆 = ((𝐵 × 𝐶) / 𝑅)
ecoptocl.2 ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))
ecoptocl.3 ((𝑥𝐵𝑦𝐶) → 𝜑)
Assertion
Ref Expression
ecoptocl (𝐴𝑆𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑅,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑆(𝑥,𝑦)

Proof of Theorem ecoptocl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elqsi 6188 . . 3 (𝐴 ∈ ((𝐵 × 𝐶) / 𝑅) → ∃𝑧 ∈ (𝐵 × 𝐶)𝐴 = [𝑧]𝑅)
2 eqid 2056 . . . . 5 (𝐵 × 𝐶) = (𝐵 × 𝐶)
3 eceq1 6171 . . . . . . 7 (⟨𝑥, 𝑦⟩ = 𝑧 → [⟨𝑥, 𝑦⟩]𝑅 = [𝑧]𝑅)
43eqeq2d 2067 . . . . . 6 (⟨𝑥, 𝑦⟩ = 𝑧 → (𝐴 = [⟨𝑥, 𝑦⟩]𝑅𝐴 = [𝑧]𝑅))
54imbi1d 224 . . . . 5 (⟨𝑥, 𝑦⟩ = 𝑧 → ((𝐴 = [⟨𝑥, 𝑦⟩]𝑅𝜓) ↔ (𝐴 = [𝑧]𝑅𝜓)))
6 ecoptocl.3 . . . . . 6 ((𝑥𝐵𝑦𝐶) → 𝜑)
7 ecoptocl.2 . . . . . . 7 ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))
87eqcoms 2059 . . . . . 6 (𝐴 = [⟨𝑥, 𝑦⟩]𝑅 → (𝜑𝜓))
96, 8syl5ibcom 148 . . . . 5 ((𝑥𝐵𝑦𝐶) → (𝐴 = [⟨𝑥, 𝑦⟩]𝑅𝜓))
102, 5, 9optocl 4443 . . . 4 (𝑧 ∈ (𝐵 × 𝐶) → (𝐴 = [𝑧]𝑅𝜓))
1110rexlimiv 2444 . . 3 (∃𝑧 ∈ (𝐵 × 𝐶)𝐴 = [𝑧]𝑅𝜓)
121, 11syl 14 . 2 (𝐴 ∈ ((𝐵 × 𝐶) / 𝑅) → 𝜓)
13 ecoptocl.1 . 2 𝑆 = ((𝐵 × 𝐶) / 𝑅)
1412, 13eleq2s 2148 1 (𝐴𝑆𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wcel 1409  wrex 2324  cop 3405   × cxp 4370  [cec 6134   / cqs 6135
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-br 3792  df-opab 3846  df-xp 4378  df-cnv 4380  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-ec 6138  df-qs 6142
This theorem is referenced by:  2ecoptocl  6224  3ecoptocl  6225  mulidnq  6544  recexnq  6545  ltsonq  6553  distrnq0  6614  addassnq0  6617  ltposr  6905  0idsr  6909  1idsr  6910  00sr  6911  recexgt0sr  6915  archsr  6923  srpospr  6924
  Copyright terms: Public domain W3C validator