![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ecss | GIF version |
Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ecss.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
Ref | Expression |
---|---|
ecss | ⊢ (𝜑 → [𝐴]𝑅 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ec 6174 | . . 3 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
2 | imassrn 4709 | . . 3 ⊢ (𝑅 “ {𝐴}) ⊆ ran 𝑅 | |
3 | 1, 2 | eqsstri 3030 | . 2 ⊢ [𝐴]𝑅 ⊆ ran 𝑅 |
4 | ecss.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
5 | errn 6194 | . . 3 ⊢ (𝑅 Er 𝑋 → ran 𝑅 = 𝑋) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝜑 → ran 𝑅 = 𝑋) |
7 | 3, 6 | syl5sseq 3048 | 1 ⊢ (𝜑 → [𝐴]𝑅 ⊆ 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ⊆ wss 2974 {csn 3406 ran crn 4372 “ cima 4374 Er wer 6169 [cec 6170 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-pr 3972 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-br 3794 df-opab 3848 df-xp 4377 df-rel 4378 df-cnv 4379 df-dm 4381 df-rn 4382 df-res 4383 df-ima 4384 df-er 6172 df-ec 6174 |
This theorem is referenced by: qsss 6231 |
Copyright terms: Public domain | W3C validator |