ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elab3g GIF version

Theorem elab3g 2745
Description: Membership in a class abstraction, with a weaker antecedent than elabg 2740. (Contributed by NM, 29-Aug-2006.)
Hypothesis
Ref Expression
elab3g.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elab3g ((𝜓𝐴𝐵) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elab3g
StepHypRef Expression
1 nfcv 2220 . 2 𝑥𝐴
2 nfv 1462 . 2 𝑥𝜓
3 elab3g.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
41, 2, 3elab3gf 2744 1 ((𝜓𝐴𝐵) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1285  wcel 1434  {cab 2068
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604
This theorem is referenced by:  elab3  2746  elssabg  3931  elrnmptg  4614  elreimasng  4721  fvelrnb  5253
  Copyright terms: Public domain W3C validator