![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > elabg2 | GIF version |
Description: One implication of elabg 2740. (Contributed by BJ, 21-Nov-2019.) |
Ref | Expression |
---|---|
elabg2.1 | ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) |
Ref | Expression |
---|---|
elabg2 | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2220 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfv 1462 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | elabg2.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) | |
4 | 1, 2, 3 | elabgf2 10741 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ∈ wcel 1434 {cab 2068 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |