ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcnv GIF version

Theorem elcnv 4540
Description: Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
elcnv (𝐴𝑅 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑦𝑅𝑥))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Proof of Theorem elcnv
StepHypRef Expression
1 df-cnv 4381 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑅𝑥}
21eleq2i 2120 . 2 (𝐴𝑅𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑅𝑥})
3 elopab 4023 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑅𝑥} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑦𝑅𝑥))
42, 3bitri 177 1 (𝐴𝑅 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑦𝑅𝑥))
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102   = wceq 1259  wex 1397  wcel 1409  cop 3406   class class class wbr 3792  {copab 3845  ccnv 4372
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-opab 3847  df-cnv 4381
This theorem is referenced by:  elcnv2  4541
  Copyright terms: Public domain W3C validator