ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifpw GIF version

Theorem eldifpw 4235
Description: Membership in a power class difference. (Contributed by NM, 25-Mar-2007.)
Hypothesis
Ref Expression
eldifpw.1 𝐶 ∈ V
Assertion
Ref Expression
eldifpw ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶𝐵) → (𝐴𝐶) ∈ (𝒫 (𝐵𝐶) ∖ 𝒫 𝐵))

Proof of Theorem eldifpw
StepHypRef Expression
1 elpwi 3395 . . . 4 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
2 unss1 3139 . . . . 5 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
3 eldifpw.1 . . . . . . 7 𝐶 ∈ V
4 unexg 4205 . . . . . . 7 ((𝐴 ∈ 𝒫 𝐵𝐶 ∈ V) → (𝐴𝐶) ∈ V)
53, 4mpan2 409 . . . . . 6 (𝐴 ∈ 𝒫 𝐵 → (𝐴𝐶) ∈ V)
6 elpwg 3394 . . . . . 6 ((𝐴𝐶) ∈ V → ((𝐴𝐶) ∈ 𝒫 (𝐵𝐶) ↔ (𝐴𝐶) ⊆ (𝐵𝐶)))
75, 6syl 14 . . . . 5 (𝐴 ∈ 𝒫 𝐵 → ((𝐴𝐶) ∈ 𝒫 (𝐵𝐶) ↔ (𝐴𝐶) ⊆ (𝐵𝐶)))
82, 7syl5ibr 149 . . . 4 (𝐴 ∈ 𝒫 𝐵 → (𝐴𝐵 → (𝐴𝐶) ∈ 𝒫 (𝐵𝐶)))
91, 8mpd 13 . . 3 (𝐴 ∈ 𝒫 𝐵 → (𝐴𝐶) ∈ 𝒫 (𝐵𝐶))
10 elpwi 3395 . . . . 5 ((𝐴𝐶) ∈ 𝒫 𝐵 → (𝐴𝐶) ⊆ 𝐵)
1110unssbd 3148 . . . 4 ((𝐴𝐶) ∈ 𝒫 𝐵𝐶𝐵)
1211con3i 572 . . 3 𝐶𝐵 → ¬ (𝐴𝐶) ∈ 𝒫 𝐵)
139, 12anim12i 325 . 2 ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶𝐵) → ((𝐴𝐶) ∈ 𝒫 (𝐵𝐶) ∧ ¬ (𝐴𝐶) ∈ 𝒫 𝐵))
14 eldif 2954 . 2 ((𝐴𝐶) ∈ (𝒫 (𝐵𝐶) ∖ 𝒫 𝐵) ↔ ((𝐴𝐶) ∈ 𝒫 (𝐵𝐶) ∧ ¬ (𝐴𝐶) ∈ 𝒫 𝐵))
1513, 14sylibr 141 1 ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶𝐵) → (𝐴𝐶) ∈ (𝒫 (𝐵𝐶) ∖ 𝒫 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101  wb 102  wcel 1409  Vcvv 2574  cdif 2941  cun 2942  wss 2944  𝒫 cpw 3386
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pr 3971  ax-un 4197
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-rex 2329  df-v 2576  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-uni 3608
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator