Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldm GIF version

Theorem eldm 4560
 Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.)
Hypothesis
Ref Expression
eldm.1 𝐴 ∈ V
Assertion
Ref Expression
eldm (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵

Proof of Theorem eldm
StepHypRef Expression
1 eldm.1 . 2 𝐴 ∈ V
2 eldmg 4558 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦))
31, 2ax-mp 7 1 (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)
 Colors of variables: wff set class Syntax hints:   ↔ wb 102  ∃wex 1397   ∈ wcel 1409  Vcvv 2574   class class class wbr 3792  dom cdm 4373 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2950  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-dm 4383 This theorem is referenced by:  dmi  4578  dmcoss  4629  dmcosseq  4631  dminss  4766  dmsnm  4814  dffun7  4956  dffun8  4957  fnres  5043  fndmdif  5300  reldmtpos  5899  dmtpos  5902  tfrexlem  5979
 Copyright terms: Public domain W3C validator