ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldm2 GIF version

Theorem eldm2 4561
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
eldm.1 𝐴 ∈ V
Assertion
Ref Expression
eldm2 (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵

Proof of Theorem eldm2
StepHypRef Expression
1 eldm.1 . 2 𝐴 ∈ V
2 eldm2g 4559 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵))
31, 2ax-mp 7 1 (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 102  wex 1397  wcel 1409  Vcvv 2574  cop 3406  dom cdm 4373
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2950  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-dm 4383
This theorem is referenced by:  dmss  4562  opeldm  4566  dmin  4571  dmiun  4572  dmuni  4573  dm0  4577  reldm0  4581  dmrnssfld  4623  dmcoss  4629  dmcosseq  4631  dmres  4660  iss  4682  dmxpss  4781  dmsnopg  4820  relssdmrn  4869  funssres  4970  fun11iun  5175  tfrlemibxssdm  5972
  Copyright terms: Public domain W3C validator