ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzo0 GIF version

Theorem elfzo0 9927
Description: Membership in a half-open integer range based at 0. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
elfzo0 (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵))

Proof of Theorem elfzo0
StepHypRef Expression
1 elfzouz 9896 . . . 4 (𝐴 ∈ (0..^𝐵) → 𝐴 ∈ (ℤ‘0))
2 elnn0uz 9331 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ (ℤ‘0))
31, 2sylibr 133 . . 3 (𝐴 ∈ (0..^𝐵) → 𝐴 ∈ ℕ0)
4 elfzolt3b 9904 . . . 4 (𝐴 ∈ (0..^𝐵) → 0 ∈ (0..^𝐵))
5 lbfzo0 9926 . . . 4 (0 ∈ (0..^𝐵) ↔ 𝐵 ∈ ℕ)
64, 5sylib 121 . . 3 (𝐴 ∈ (0..^𝐵) → 𝐵 ∈ ℕ)
7 elfzolt2 9901 . . 3 (𝐴 ∈ (0..^𝐵) → 𝐴 < 𝐵)
83, 6, 73jca 1146 . 2 (𝐴 ∈ (0..^𝐵) → (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵))
9 simp1 966 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℕ0)
109, 2sylib 121 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ (ℤ‘0))
11 nnz 9041 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
12113ad2ant2 988 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℤ)
13 simp3 968 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
14 elfzo2 9895 . . 3 (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ (ℤ‘0) ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵))
1510, 12, 13, 14syl3anbrc 1150 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ (0..^𝐵))
168, 15impbii 125 1 (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵))
Colors of variables: wff set class
Syntax hints:  wb 104  w3a 947  wcel 1465   class class class wbr 3899  cfv 5093  (class class class)co 5742  0cc0 7588   < clt 7768  cn 8688  0cn0 8945  cz 9022  cuz 9294  ..^cfzo 9887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8689  df-n0 8946  df-z 9023  df-uz 9295  df-fz 9759  df-fzo 9888
This theorem is referenced by:  fzo1fzo0n0  9928  elfzo0z  9929  elfzo0le  9930  fzonmapblen  9932  fzofzim  9933  ubmelfzo  9945  elfzodifsumelfzo  9946  elfzonlteqm1  9955  fzonn0p1  9956  fzonn0p1p1  9958  elfzom1p1elfzo  9959  ubmelm1fzo  9971  subfzo0  9987  zmodidfzoimp  10095  modfzo0difsn  10136  modsumfzodifsn  10137  addmodlteq  10139  addmodlteqALT  11484  hashgcdlem  11830
  Copyright terms: Public domain W3C validator