ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzp1b GIF version

Theorem elfzp1b 9845
Description: An integer is a member of a 0-based finite set of sequential integers iff its successor is a member of the corresponding 1-based set. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
elfzp1b ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...(𝑁 − 1)) ↔ (𝐾 + 1) ∈ (1...𝑁)))

Proof of Theorem elfzp1b
StepHypRef Expression
1 peano2z 9058 . . . 4 (𝐾 ∈ ℤ → (𝐾 + 1) ∈ ℤ)
2 1z 9048 . . . . 5 1 ∈ ℤ
3 fzsubel 9808 . . . . . 6 (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 + 1) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1))))
42, 3mpanl1 430 . . . . 5 ((𝑁 ∈ ℤ ∧ ((𝐾 + 1) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1))))
52, 4mpanr2 434 . . . 4 ((𝑁 ∈ ℤ ∧ (𝐾 + 1) ∈ ℤ) → ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1))))
61, 5sylan2 284 . . 3 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1))))
76ancoms 266 . 2 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1))))
8 zcn 9027 . . . . 5 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
9 ax-1cn 7681 . . . . 5 1 ∈ ℂ
10 pncan 7936 . . . . 5 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) − 1) = 𝐾)
118, 9, 10sylancl 409 . . . 4 (𝐾 ∈ ℤ → ((𝐾 + 1) − 1) = 𝐾)
12 1m1e0 8757 . . . . . 6 (1 − 1) = 0
1312oveq1i 5752 . . . . 5 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
1413a1i 9 . . . 4 (𝐾 ∈ ℤ → ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1)))
1511, 14eleq12d 2188 . . 3 (𝐾 ∈ ℤ → (((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1)) ↔ 𝐾 ∈ (0...(𝑁 − 1))))
1615adantr 274 . 2 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1)) ↔ 𝐾 ∈ (0...(𝑁 − 1))))
177, 16bitr2d 188 1 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...(𝑁 − 1)) ↔ (𝐾 + 1) ∈ (1...𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1316  wcel 1465  (class class class)co 5742  cc 7586  0cc0 7588  1c1 7589   + caddc 7591  cmin 7901  cz 9022  ...cfz 9758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8689  df-n0 8946  df-z 9023  df-fz 9759
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator