ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzuz GIF version

Theorem elfzuz 9802
Description: A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzuz (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))

Proof of Theorem elfzuz
StepHypRef Expression
1 elfzuzb 9800 . 2 (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)))
21simplbi 272 1 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1480  cfv 5123  (class class class)co 5774  cuz 9326  ...cfz 9790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452  ax-cnex 7711  ax-resscn 7712
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-neg 7936  df-z 9055  df-uz 9327  df-fz 9791
This theorem is referenced by:  elfzel1  9805  elfzelz  9806  elfzle1  9807  eluzfz2b  9813  fzsplit2  9830  fzsplit  9831  fzopth  9841  fzss1  9843  fzss2  9844  fzssuz  9845  fzp1elp1  9855  uzsplit  9872  elfzmlbm  9908  fzosplit  9954  seq3feq2  10243  seq3feq  10245  ser3mono  10251  seq3caopr3  10254  iseqf1olemkle  10257  iseqf1olemklt  10258  iseqf1olemnab  10261  iseqf1olemqk  10267  iseqf1olemjpcl  10268  iseqf1olemqpcl  10269  iseqf1olemfvp  10270  seq3f1olemqsumkj  10271  seq3f1olemqsumk  10272  seq3f1olemqsum  10273  seq3f1olemstep  10274  seq3f1oleml  10276  seq3f1o  10277  seq3z  10284  ser0  10287  ser3le  10291  seq3coll  10585  climub  11113  sumrbdclem  11146  fsum3cvg  11147  fsum3ser  11166  fsump1i  11202  fsum0diaglem  11209  iserabs  11244  isumsplit  11260  isum1p  11261  geosergap  11275  mertenslemi1  11304  prodf1  11311  prodfap0  11314  prodfrecap  11315  prodfdivap  11316  prodrbdclem  11340  fproddccvg  11341  infssuzex  11642  prmind2  11801  prmdvdsfz  11819  cvgcmp2nlemabs  13227
  Copyright terms: Public domain W3C validator