ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzuz2 GIF version

Theorem elfzuz2 8965
Description: Implication of membership in a finite set of sequential integers. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzuz2 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))

Proof of Theorem elfzuz2
StepHypRef Expression
1 elfzuzb 8956 . 2 (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)))
2 eqid 2054 . . 3 (ℤ𝑀) = (ℤ𝑀)
32uztrn2 8556 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ (ℤ𝑀))
41, 3sylbi 118 1 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wcel 1407  cfv 4927  (class class class)co 5537  cuz 8539  ...cfz 8946
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 552  ax-in2 553  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-13 1418  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-sep 3900  ax-pow 3952  ax-pr 3969  ax-un 4195  ax-setind 4287  ax-cnex 7003  ax-resscn 7004  ax-pre-ltwlin 7025
This theorem depends on definitions:  df-bi 114  df-3or 895  df-3an 896  df-tru 1260  df-fal 1263  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ne 2219  df-nel 2313  df-ral 2326  df-rex 2327  df-rab 2330  df-v 2574  df-sbc 2785  df-dif 2945  df-un 2947  df-in 2949  df-ss 2956  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-br 3790  df-opab 3844  df-mpt 3845  df-id 4055  df-xp 4376  df-rel 4377  df-cnv 4378  df-co 4379  df-dm 4380  df-rn 4381  df-res 4382  df-ima 4383  df-iota 4892  df-fun 4929  df-fn 4930  df-f 4931  df-fv 4935  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-pnf 7091  df-mnf 7092  df-xr 7093  df-ltxr 7094  df-le 7095  df-neg 7218  df-z 8273  df-uz 8540  df-fz 8947
This theorem is referenced by:  elfzle3  8966  elfzubelfz  8972  fzm  8974  fzopth  8996  elfzmlbm  9060  elfzom1elp1fzo  9130  bcm1k  9592  bcpasc  9598
  Copyright terms: Public domain W3C validator