ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elico2 GIF version

Theorem elico2 9088
Description: Membership in a closed-below, open-above real interval. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elico2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))

Proof of Theorem elico2
StepHypRef Expression
1 rexr 7278 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 elico1 9074 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
31, 2sylan 277 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
4 mnfxr 7289 . . . . . . . 8 -∞ ∈ ℝ*
54a1i 9 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → -∞ ∈ ℝ*)
61ad2antrr 472 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐴 ∈ ℝ*)
7 simpr1 945 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐶 ∈ ℝ*)
8 mnflt 8986 . . . . . . . 8 (𝐴 ∈ ℝ → -∞ < 𝐴)
98ad2antrr 472 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → -∞ < 𝐴)
10 simpr2 946 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐴𝐶)
115, 6, 7, 9, 10xrltletrd 9009 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → -∞ < 𝐶)
12 simplr 497 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐵 ∈ ℝ*)
13 pnfxr 7285 . . . . . . . 8 +∞ ∈ ℝ*
1413a1i 9 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → +∞ ∈ ℝ*)
15 simpr3 947 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐶 < 𝐵)
16 pnfge 8992 . . . . . . . 8 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
1716ad2antlr 473 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐵 ≤ +∞)
187, 12, 14, 15, 17xrltletrd 9009 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐶 < +∞)
19 xrrebnd 9014 . . . . . . 7 (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
207, 19syl 14 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
2111, 18, 20mpbir2and 886 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐶 ∈ ℝ)
2221, 10, 153jca 1119 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵))
2322ex 113 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
24 rexr 7278 . . . 4 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
25243anim1i 1125 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) → (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵))
2623, 25impbid1 140 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
273, 26bitrd 186 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 920  wcel 1434   class class class wbr 3805  (class class class)co 5563  cr 7094  +∞cpnf 7264  -∞cmnf 7265  *cxr 7266   < clt 7267  cle 7268  [,)cico 9041
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7181  ax-resscn 7182  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-id 4076  df-po 4079  df-iso 4080  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-iota 4917  df-fun 4954  df-fv 4960  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-ico 9045
This theorem is referenced by:  icossre  9105  elicopnf  9120  icoshft  9140  modqelico  9468  mulqaddmodid  9498  modqmuladdim  9501  addmodid  9506  icodiamlt  10267
  Copyright terms: Public domain W3C validator